scholarly journals A Luminescent, Water-Soluble Ir(III) Complex as a Potential Photosensitizer for Two-Photon Photodynamic Therapy

2021 ◽  
Vol 11 (24) ◽  
pp. 11596
Author(s):  
Elisabeta I. Szerb ◽  
Sharmistha Chatterjee ◽  
Massimo La Deda ◽  
Giovanna Palermo ◽  
Lucie Sancey ◽  
...  

This work reports the study of two-photon induced properties of a highly luminescent cyclometalated Ir(III) complex, [Ir(ppy)2(en)] OOCCH3 (1), ppy = 2-phenylpyridine, en = ethylenediamine. Steady-state and time-resolved fluorescence measurements were performed by exciting 1 at the biologically relevant wavelength of 800 nm, whereas, the generation of singlet oxygen (1O2) was evaluated using 9,10-Anthracenediyl-bis(methylene)dimalonic acid (ABDA) as a detection probe. Preliminary in vitro experiments with U87-MG cells were performed, showing the potential of this compound as a two-photon photodynamic therapy (2P-PDT) agent at NIR wavelengths.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Kazuya Ogawa ◽  
Yoshiaki Kobuke

Studies on two-photon absorption (2PA) photodynamic therapy (PDT) by using three water-soluble porphyrin self-assemblies consisting of ethynylene-linked conjugatedbis(imidazolylporphyrin) are reviewed. 2PA cross-section values in water were obtained by an open aperture Z-scan measurement, and values were extremely large compared with those of monomeric porphyrins such as hematoporphyrin. These compounds were found to generate singlet oxygen efficiently upon one- as well as two-photon absorption as demonstrated by the time-resolved luminescence measurement at the characteristic band of singlet oxygen at 1270 nm and by using its scavenger. Photocytotoxicities for HeLa cancer cells were examined and found to be as high as those of hematoporphyrin, demonstrating that these compounds are potential candidates for 2PA-photodynamic therapy agents.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2046
Author(s):  
Jonas K. Koehler ◽  
Johannes Schnur ◽  
Heiko Heerklotz ◽  
Ulrich Massing

Dual centrifugation (DC) is a novel in-vial homogenization technique for the preparation of liposomes in small batch sizes under gentle and sterile conditions which allows encapsulation efficiencies (EE) for water soluble compounds of >50%. Since liposome size, size distribution (PDI), and EE depend on the lipid concentration used in the DC process, a screening method to find optimal lipid concentrations for a defined lipid composition was developed. Four lipid mixtures consisting of cholesterol, hydrogenated or non-hydrogenated egg PC, and/or PEG-DSPE were screened and suitable concentration ranges could be identified for optimal DC homogenization. In addition to the very fast and parallel liposome preparation of up to 40 samples, the screening process was further accelerated by the finding that DC generates homogeneously mixed liposomes from a macroscopic lipid mixture without the need to initially prepare a molecularly mixed lipid film from an organic solution of all components. This much simpler procedure even works for cholesterol containing lipid blends, which could be explained by a nano-milling of the cholesterol crystals during DC homogenization. Furthermore, EE determination was performed by time-resolved fluorescence measurements of calcein-loaded liposomes without removing the non-entrapped calcein. The new strategy allows the rapid characterization of a certain lipid composition for the preparation of liposomes within a working day.


2011 ◽  
Vol 410 (1) ◽  
pp. 62-69 ◽  
Author(s):  
Martin Štefl ◽  
Nicholas G. James ◽  
Justin A. Ross ◽  
David M. Jameson

Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 251 ◽  
Author(s):  
Kateřina Bartoň Tománková ◽  
Ariana Opletalová ◽  
Kateřina Poláková ◽  
Sergii Kalytchuk ◽  
Jana Jiravová ◽  
...  

Targeted therapies of various diseases are nowadays widely studied in many biomedical fields. Photodynamic therapy (PDT) represents a modern treatment of cancer using a locally activated light. TMPyP is an efficient synthetic water-soluble photosensitizer (PS), yet with poor absorption in the visible and the red regions. In this work, we prepared size-selected and colloidally stable graphene oxide (GO) that is appropriate for biomedical use. Thanks to the negative surface charge of GO, TMPyP was easily linked in order to create conjugates of GO/TMPyP by electrostatic force. Due to the strong ionic interactions, charge transfers between GO and TMPyP occur, as comprehensively investigated by steady-state and time-resolved fluorescence spectroscopy. Biocompatibility and an in vitro effect of GO/TMPyP were confirmed by a battery of in vitro tests including MTT, comet assay, reactive oxygen species (ROS) production, and monitoring the cellular uptake. PDT efficiency of GO/TMPyP was tested using 414 and 740 nm photoexcitation. Our newly prepared nanotherapeutics showed a higher PDT effect than in free TMPyP, and is promising for targeted therapy using clinically favorable conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreea Lorena Mateescu ◽  
Nicolae-Bogdan Mincu ◽  
Silvana Vasilca ◽  
Roxana Apetrei ◽  
Diana Stan ◽  
...  

AbstractThe purpose of the present study was to evaluate de influence of protein–sugar complexation on the stability and functionality of C-reactive protein, after exposure to constant high temperatures, in order to develop highly stable positive controls for in-vitro diagnostic tests. C-reactive protein is a plasmatic protein used as a biomarker for the diagnosis of a series of health problems such as ulcerative colitis, cardiovascular diseases, metabolic syndrome, due to its essential role in the evolution of chronic inflammation. The sugar–protein interaction was investigated using steady state and time resolved fluorescence. The results revealed that there are more than two classes of tryptophan, with different degree of accessibility for the quencher molecule. Our study also revealed that sugar–protein complexes have superior thermostability, especially after gamma irradiation at 2 kGy, the protein being stable and functional even after 22 days exposure to 40 °C.


2007 ◽  
Vol 11 (06) ◽  
pp. 406-417 ◽  
Author(s):  
Yusuke Inaba ◽  
Kazuya Ogawa ◽  
Yoshiaki Kobuke

Acetylene-bridged bisporphyrins and trisporphyrins having branched bulky bis(carboxylethyl)methyl meso-substituents were synthesized. These compounds showed large effective two-photon absorption cross-section values at 890 nm measured by using a nanosecond Z-scan method. Sodium salt of hydrolyzed trisporphyrins showed broad and red-shifted Q-bands over 900 nm. Two-photon absorption cross-section values of water-soluble dimers in water were similar to, or slightly larger than, those of ester forms evaluated in toluene. Furthermore, the generation of singlet oxygen upon one-photon irradiation for dimers in water was confirmed.


1988 ◽  
Vol 34 (8) ◽  
pp. 1640-1644 ◽  
Author(s):  
M J Khosravi ◽  
R C Morton ◽  
E P Diamandis

Abstract In this new immunofluorometric method for quantification of lutropin in serum, the "sandwich" principle is combined with time-resolved fluorescence measurements, with the europium chelate 4,7-bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid (BCPDA) used as label. A monoclonal antibody to the alpha-subunit of lutropin is adsorbed onto the walls of white-opaque microtiter wells to form the solid-phase capture antibody, and a biotin-labeled soluble monoclonal antibody is used for antigen quantification. The detection system is completed with streptavidin, which has been linked to a protein bulking agent labeled with multiple BCPDA residues. In the presence of excess europium, the fluorescence of the final complex attached to captured lutropin molecules is measured on the dried solid phasse with an automated time-resolved fluorometer. The assay can be performed as a rapid (less than 60 min incubation) or regular (150 min incubation) procedure. The rapid assay is well-suited for routine daily monitoring of increasing or ovulatory lutropin concentrations; the regular assay, with its greater sensitivity (0.5 int. unit/L), is a practical procedure for lutropin measurements in hyposecretory states. The assay measures up to 240 int. units/L, and results compare well with those by a commercially available radioimmunoassay, an immunoradiometric assay, and another time-resolved immunofluorometric procedure.


Sign in / Sign up

Export Citation Format

Share Document