scholarly journals Analysis of the Causes of the Collapse of a Deep-Buried Large Cross-Section of Loess Tunnel and Evaluation of Treatment Measures

2021 ◽  
Vol 12 (1) ◽  
pp. 161
Author(s):  
Dengke Wang ◽  
Jianjun Luo ◽  
Kaiming Shen ◽  
Liping Gao ◽  
Feilong Li ◽  
...  

To address the problem of the collapse of the roof of the Bailuyuan tunnel during construction, the causes of collapse were analyzed, targeted treatment measures were proposed, and the effects of the treatment measures were evaluated through on-site monitoring and three-dimensional numerical simulations. The results showed that the particular characteristics of loess and the synergy of groundwater were the internal causes of the tunnel’s collapse as well as, to a certain extent, atmospheric precipitation. Therefore, the combination of multiple factors contributed to the tunnel’s collapse. Untimely monitoring and measurement, as well as the low initial support parameters, reflect a lack of human understanding of the collapse. Based on the analysis of the causes of the collapse, comprehensive treatment measures for inside and outside the tunnel are proposed, which are shown to be effective and to be capable of preventing the occurrence of further collapses. After the collapse treatment, the measured maximum settlement of the tunnel vault was 65.1 mm, the maximum horizontal convergence was 25 mm, the maximum surrounding rock pressure was 0.56 MPa, and the maximum stress on the steel arch frame was 54.34 MPa. Compared with the original design plan, the vertical stress, horizontal stress, and shear stress of the surrounding rock obtained from numerical simulation after the collapse treatment were greatly reduced, the reduction rate at the vault reached 50%, and the safety factors of the initial support positions after treatment met the specification requirements. The research results can provide engineering guidance for the design and construction of large-section tunnels crossing deep-loess strata, and they are of important engineering significance.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hao Wu ◽  
Xiaohua Yang ◽  
Shichun Cai ◽  
Binjing Zhao ◽  
Kunlong Zheng

Deep-buried soft rock tunnels exhibit low strength and easy deformation under the influence of high ground stress. The surrounding rock of the soft rock tunnel may undergo large deformation during the construction process, thereby causing engineering problems such as the collapse of the vault, bottom heave, and damage to the supporting structure. The Chengwu Expressway Tunnel II, considered in this study, is a phyllite tunnel, with weak surrounding rock and poor water stability. Under the original design conditions, the supporting structure exhibits stress concentration and large deformation. To address these issues, three schemes involving the use of the double-layer steel arch to support, weakening of the steel arch close to the excavation surface, and weakening of the steel arch away from the excavation surface to support were proposed. Using these schemes, the inverted radius was varied to explore its influence on different support schemes. For simulation, the values of the inverted radius selected were as follows: 1300 cm, 1000 cm, and 700 cm. The proposed support plan was simulated using FLAC3D, and the changes in the pressure between the initial support and surrounding rock, the settling of the vault, and the surrounding convergence were investigated. The numerical simulation results of monitoring the surrounding rock deformation show that the double-layer steel arch can effectively reduce the large deformation of the soft rock well. When the stiffness of one of the steel arches was weakened, the support’s ability to control the deformation was weakened; however, it still showed reliable performance in controlling deformation. However, changing the radius of the invert had an insignificant effect on the deformation and force of the supporting structure.


2011 ◽  
Vol 368-373 ◽  
pp. 2870-2874
Author(s):  
De Wu Li

Related to the actual project in the new Qi Daoliang tunnel between Lanzhou and Lintao highway, select 300-meter calculation range along the tunnel vertically including fault-rupture zone and effect fault-rupture zone, utilize 8 -node, 6-plane block element to scatter the calculating range, at the same time, use the deduced 8 -node, three dimensional jointed element to imitate the transformation gap of the tunnel lining, employ three-dimensional elasto-plastic static finite element program to analyze stress and transformation state of surrounding rock and lining in different construction stages of the new Qi Daoliang tunnel. Through the analysis and comparison of the calculation result of the three conditions: not placing transformation gap through, placing one transformation gap in the middle of the fault-rupture zone, placing two transformation gaps in the beginning and the end of the fault-rupture zone etc, we can get the following points: ①The gallery transformation in the fault-rupture zone and the plastic area in the surrounding rock are obviously bigger than the non-fault-rupture zone. ②Owing to the effect of fault-rupture zone, the increasing range of internal force of the initial support and twice lining is about 10% to 30%. ③Placing the transformation gap in the fault-rupture zone can obviously play a role in releasing lining internal force and transformation energy in the surrounding rock. ④In the start and end changing point of fault-rupture zone, the transformation gap should be placed in the tunnel lining.


2020 ◽  
Vol 10 (12) ◽  
pp. 4294 ◽  
Author(s):  
Shifan Qiao ◽  
Ziyong Cai ◽  
Junkun Tan ◽  
Ping Xu ◽  
Yonggang Zhang

Collapse is one of the most dangerous geological disasters in tunnel construction, and it is an urgent engineering problem which needs to be solved. Taking the collapse of the top of an actual tunnel face as an example, through field investigation and theoretical calculation methods, the mechanism of tunnel collapse was studied, and the treatment and evaluation of the collapse area were proposed based on field monitoring data. The results show that the extrusion and bulging deformation on the palm surface and the tensile fracture in the top inclined stratum led to the shear slip of the block along the structural surface and the local collapse of the surrounding rock. Based on the block theory, the potential unstable block at the top of the tunnel was successfully identified, and the treatment method of ‘protecting before filling and then digging’ was proposed. The comprehensive treatment measures of advance bolts, steel arch support, collapse backfill, and step excavation were adopted, with on-site monitoring followed up step by step. Based on the analysis of surrounding rock deformation and stress characteristics, in this paper we demonstrate that the treatment effects of the collapse area are good, and ensure the safety and smooth progress of construction. The proposed treatment method achieved the expected goal and was shown to be able to provide successful treatment for similar collapse cases of tunnel engineering.


Author(s):  
Sheng Yu-ming ◽  
Li Chao ◽  
Xia Ming-yao ◽  
Zou Jin-feng

Abstract In this study, elastoplastic model for the surrounding rock of axisymmetric circular tunnel is investigated under three-dimensional (3D) principal stress states. Novel numerical solutions for strain-softening surrounding rock were first proposed based on the modified 3D Hoek–Brown criterion and the associated flow rule. Under a 3D axisymmetric coordinate system, the distributions for stresses and displacement can be effectively determined on the basis of the redeveloped stress increment approach. The modified 3D Hoek–Brown strength criterion is also embedded into finite element software to characterize the yielding state of surrounding rock based on the modified yield surface and stress renewal algorithm. The Euler implicit constitutive integral algorithm and the consistent tangent stiffness matrix are reconstructed in terms of the 3D Hoek–Brown strength criterion. Therefore, the numerical solutions and finite element method (FEM) models for the deep buried tunnel under 3D principal stress condition are presented, so that the stability analysis of surrounding rock can be conducted in a direct and convenient way. The reliability of the proposed solutions was verified by comparison of the principal stresses obtained by the developed numerical approach and FEM model. From a practical point of view, the proposed approach can also be applied for the determination of ground response curve of the tunnel, which shows a satisfying accuracy compared with the measuring data.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wei Chen ◽  
Yu kun Luo ◽  
Ying Zhang ◽  
Qing Song ◽  
Jie Tang

Abstract Background Treatment for radioiodine refractory differentiated thyroid carcinoma (RR-DTC) is challenging. The purpose of this study was to assess the efficacy and safety of ultrasound-guided implantation of radioactive 125I-seed in radioiodine refractory differentiated thyroid carcinoma. Methods Thirty-six cervical metastatic lymph nodes (CMLNs) diagnosed with RR-DTC from 18 patients were enrolled in this retrospective study. US and contrast-enhanced ultrasound (CEUS) examinations were performed before implantation. Follow-up comprised US, CEUS, thyroglobulin (Tg) level and routine hematology at 1–3, 6, 9 and 12 months and every 6 months thereafter. The volumes of the nodules were compared before implantation and at each follow-up point. The volume reduction rate (VRR) of nodules was also recorded. Results The median volume of the nodules was 523 mm3 (148, 2010mm3) initially, which decreased significantly to 53mm3 (0, 286mm3) (P < 0.01) at the follow-up point of 24 months with a median VRR as 95% (86,100%). During the follow-up period (the range was 24–50 months), 25 (69%) nodules had VRR greater than 90%, of which 12 (33%) nodules had VVR ≈ 100% with unclear structures and only 125I seed images were visible in the US. At the last follow-up visit, the serum Tg level decreased from 57.0 (8.6, 114.8) ng/ml to 4.9 (0.7, 50.3) ng/ml, (P < 0.01). Conclusion US-guided 125I seed implantation is safety and efficacy in treating RR- DTC. It could be an effective supplement for the comprehensive treatment of thyroid cancer.


Author(s):  
Kuengmi Choi ◽  
Jungil Jun ◽  
Youngshil Ryoo ◽  
Sunmi Park

A bra use can reduce physiological and physical functions because of clothing pressure, which can be a problem for new senior women starting to lose physical function. The present study presents a bra top design development method for promoting new senior women’s physical activity by identifying problems related to bras’ effects on women’s health and minimizing clothing pressure. The analysis utilized the 3D scan data of 42 adult women (age range: 50s) from the 5th Size Korea Project. Bra top design elements were extracted based on new senior consumers’ needs. We developed an average wireframe reflecting the new senior’s physical characteristics, and a standard body form was developed through surface modeling. To produce a consumer-oriented bra with a body shaping effect and reduced clothing pressure that would not affect physical activities, a three-dimensional pattern was developed applying an optimal reduction rate of 80%. To verify the bra’s adequacy for the body form of new senior women, two market-available bras were selected and fit-compared to the developed product. The developed bra received higher expert appearance evaluation and 3D virtual clothing evaluation scores. This study is significant because by using virtual fitting technology, it provides foundational data to quantify the quality of fashion products.


Author(s):  
Yunpeng Gu ◽  
Ning Kang ◽  
Qianwen Lv ◽  
Yue Qi ◽  
Zhenjun Liu ◽  
...  

Abstract Background Upper arm liposuction mainly focuses on the posterolateral region, which may lead to a lack of harmony between the aspirated and unaspirated areas. In addition, the treatment effect of arm liposuction is often evaluated only by preoperative and postoperative photograph comparison and simple measurement; quantitative research on this topic is still lacking. Methods The multi-positional circumferential arm liposuction (MCAL) technique was proposed and applied to a total of 34 females in our hospital from 2017 to 2019. Three-dimensional data of 12 patients before the operation and after 2–3 months were collected and processed by 3D imaging, and the volume reduction rate was evaluated quantitatively. Results The MCAL method was successfully applied in the clinic, and its surgical effect was quantitatively studied. The mean follow-up time of 12 patients was (75.2 ±13.1) days, and the postoperative volume was significantly reduced. The postoperative volume of patients with type I, type II and type III decreased by (10.79 ±2.55)%, (17.25 ±3.02)% and (22.76 ±3.51)%, respectively. Conclusion Our new MCAL technique was successful, maximizing the esthetic results in upper limb contour refinements in the superficial fascial layer. The clinical efficacy of this proposed MCAL method was evaluated by CT and 3D digital technology, which provided further accuracy in demonstrating its effect on the shape of the arm. Level of evidence IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors https://www.springer.com.


Author(s):  
Chaoshan Hou ◽  
Hu Wu

The flow leaving the high pressure turbine should be guided to the low pressure turbine by an annular diffuser, which is called as the intermediate turbine duct. Flow separation, which would result in secondary flow and cause great flow loss, is easily induced by the negative pressure gradient inside the duct. And such non-uniform flow field would also affect the inlet conditions of the low pressure turbine, resulting in efficiency reduction of low pressure turbine. Highly efficient intermediate turbine duct cannot be designed without considering the effects of the rotating row of the high pressure turbine. A typical turbine model is simulated by commercial computational fluid dynamics method. This model is used to validate the accuracy and reliability of the selected numerical method by comparing the numerical results with the experimental results. An intermediate turbine duct with eight struts has been designed initially downstream of an existing high pressure turbine. On the basis of the original design, the main purpose of this paper is to reduce the net aerodynamic load on the strut surface and thus minimize the overall duct loss. Full three-dimensional inverse method is applied to the redesign of the struts. It is revealed that the duct with new struts after inverse design has an improved performance as compared with the original one.


SIMULATION ◽  
2002 ◽  
Vol 78 (10) ◽  
pp. 587-599 ◽  
Author(s):  
Ali O. Atahan

Computer simulation of vehicle collisions has improved significantly over the past decade. With advances in computer technology, nonlinear finite element codes, and material models, full-scale simulation of such complex dynamic interactions is becoming ever more possible. In this study, an explicit three-dimensional nonlinear finite element code, LS-DYNA, is used to demonstrate the capabilities of computer simulations to supplement full-scale crash testing. After a failed crash test on a strong-post guardrail system, LS-DYNA is used to simulate the system, determine the potential problems with the design, and develop an improved system that has the potential to satisfy current crash test requirements. After accurately simulating the response behavior of the full-scale crash test, a second simulation study is performed on the system with improved details. Simulation results indicate that the system performs much better compared to the original design.


Sign in / Sign up

Export Citation Format

Share Document