scholarly journals Effect of Fibre Reinforcement on Creep in Early Age Concrete

2021 ◽  
Vol 12 (1) ◽  
pp. 257
Author(s):  
Laura González ◽  
Álvaro Gaute ◽  
Jokin Rico ◽  
Carlos Thomas

This research analyses the strain behaviour of fibre-reinforced concrete (FRC) in the event of a creep episode. The analysis of creep experienced by FRC specimens during the test reflects better performance than that predicted by the EHE-08 standard. The authors propose a formulation for the evaluation of creep strain undergone by FRC. During the research, the evolution of the modulus of elasticity of FRC after a creep episode is analysed. After the test campaign, it can be concluded that FRC loaded at an earlier age stiffens after a creep episode. After the creep test is completed, the delayed elastic strain undergone by FRC is analysed and it is observed that FRC loaded at an earlier age undergoes less deformation. The authors propose a formulation for the evaluation of the delayed elastic strain undergone by FRC after a creep episode.

2014 ◽  
Vol 5 (2) ◽  
pp. 119-125
Author(s):  
I. Kovács

The present paper of a series deals with the experimental characterisation of flexural toughness properties of structural concrete containing different volume of hooked-end steel fibre reinforcement (75 kg/m3, 150 kg/m3). Third-point flexural tests were carried out on steel fibre reinforced concrete beams having a cross-section of 80 mm × 85 mm with the span of 765 mm, hence the shear span to depth ratio was 3. Beams were sawn out of steel fibre reinforced slab elements (see Part I) in order to take into consideration the introduced privilege fibre orientation (I and II) and the position of the beam (Ba-a, Ba-b, Ba-c) before sawing (see Part I). Flexural toughness properties were determined considering different standard specifications, namely the method of the ASTM (American Standards for Testing Materials), the process of the JSCE (Japan Society of Civil Engineering), and the final proposal of Banthia and Trottier for the post cracking strength. Consequently, behaviour of steel fibre reinforced concrete was examined in bending taking into consideration different experimental parameters such as fibre content, concrete mix proportions, fibre orientation, positions of test specimens in the formwork, while experimental constants were the size of specimens, the type of fibre used and the test set-up and test arrangement.


2018 ◽  
Vol 15 (1) ◽  
pp. 15
Author(s):  
AMIR SYAFIQ SAMSUDIN ◽  
MOHD HISBANY MOHD HASHIM ◽  
SITI HAWA HAMZAH ◽  
AFIDAH ABU BAKAR

Nowadays, demands in the application of fibre in concrete increase gradually as an engineering material. Rapid cost increment of material causes the increase in demand of new technology that provides safe, efficient and economical design for the present and future application. The introduction of ribbed slab reduces concrete materials and thus the cost, but the strength of the structure also reduces due to the reducing of material. Steel fibre reinforced concrete (SFRC) has the ability to maintain a part of its tensile strength prior to crack in order to resist more loading compared to conventional concrete. Meanwhile, the ribbed slab can help in material reduction. This research investigated on the bending strength of 2-ribbed and 3-ribbed concrete slab with steel fibre reinforcement under static loading with a span of 1500 mm and 1000 mm x 75 mm in cross section. An amount of 40 kg/m steel fibre of all total concrete volume was used as reinforcement instead of conventional bars with concrete grade 30 N/mm2. The slab was tested under three-point bending. Load versus deflection curve was plotted to illustrate the result and to compare the deflection between control and ribbed slab. This research shows that SFRC Ribbed Slab capable to withstand the same amount of load as normal slab structure, although the concrete volume reduces up to 20%.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1138
Author(s):  
Yang Luo ◽  
Ditao Niu ◽  
Li Su

The effect of fibre reinforcement on the chloride diffusion property of concrete is controversial, and the coupling effect of sulphate erosion and drying–wetting cycles in marine environments has been neglected in previous studies. In this study, the chloride diffusion property of hybrid basalt–polypropylene fibre-reinforced concrete subjected to a combined chloride–sulphate solution under drying–wetting cycles was investigated. The effects of basalt fibre (BF), polypropylene fibre (PF), and hybrid BP–PF on the chloride diffusion property were analysed. The results indicate that the presence of sulphate inhibits the diffusion of chloride at the early stage of erosion. However, at the late stage of erosion, sulphate does not only accelerate the diffusion of chloride by causing cracking of the concrete matrix but also leads to a decrease in the alkalinity of the pore solution, which further increases the risk of corrosion of the reinforcing steel. An appropriate amount of fibre can improve the chloride attack resistance of concrete at the early stage. With the increase in erosion time, the fibre effectively prevents the formation and development of sulphate erosion microcracks, thus reducing the adverse effects of sulphate on the resistance of concrete to chloride attack. The effects of sulphate and fibre on the chloride diffusion property were also elucidated in terms of changes in corrosion products, theoretical porosity, and the fibre-matrix interface transition zone.


2018 ◽  
Vol 183 ◽  
pp. 02005
Author(s):  
Ezio Cadoni ◽  
Matteo Dotta ◽  
Daniele Forni

The paper presents the results obtained on cylindrical Ultra High Performance Fibre Reinforced Concrete specimens with diameter of 30mm and a height of 60mm under compression at high stress rate (1.7–2.3 TPa/s). Four different percentages of fibre reinforcement are considered (1, 2, 3, and 4% fibre content) and compared with the results of the matrix (UHPC). A slight reduction of the strength and fracture time with the introduction of fibres is observed. The experimental results are analysed and discussed with the intent to better understand the mechanical behaviour of UHPFRC materials in case of dynamic event under service loading conditions.


2000 ◽  
Vol 27 (4) ◽  
pp. 774-784 ◽  
Author(s):  
Benoît Bissonnette ◽  
Yves Therrien ◽  
Richard Pleau ◽  
Michel Pigeon ◽  
François Saucier

This paper presents the results of an investigation aimed at establishing if multiple cracking can be an intrinsic property of steel fibre reinforced concrete (SFRC) in the hardened state and identifying the conditions to obtain it systematically. For this purpose, uniaxial restrained shrinkage tests and tensile tests were performed on large-scale SFRC specimens. The parameters studied in the experimental program were the fibre content (0-100 kg/m3), the fibre geometry, and the water to cement ratio of the concrete matrix (w/c = 0.40-0.80). The test results tend to indicate that multiple cracking is not a property of SFRC as such, at least within the range of concrete matrices and fibre contents investigated and that were intended to be compatible with practical considerations. While it does not mean that fibre reinforcement is not effective in terms of crack control, it is important to be careful in the analysis of test results where the effect of the restraining and exposure conditions might have been significant.Key words: cracking, drying shrinkage, fibre-reinforced concrete, multiple cracking, repairs, restrained shrinkage, steel fibres, tension.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jianda Xin ◽  
Siqing Lin ◽  
Nannan Shi ◽  
Jianshu Ouyang ◽  
Dahai Huang

For concrete under short-term loading, effect of reinforcement on concrete crack resistance capability is usually negligible; however, recent research results show that extension of this viewpoint to concrete under long-term loading (temperature variation) may be unsuitable. In order to investigate this phenomenon, this paper presents the experimental and analytical results of early-age reinforced concrete temperature stress development under uniaxial restraint. The experiments were carried out on a temperature stress testing machine (TSTM). Experimental results show that the coupling of reinforcement and concrete creep behavior influenced the concrete temperature stress development, and nearly 16% of concrete stress was reduced in the current research. Moreover, the cracking time of reinforced concrete was also delayed. Finally, based on the principle of superposition, analytical simulations of effect of reinforcement on concrete temperature stress have been performed.


2014 ◽  
Vol 5 (1) ◽  
pp. 9-19
Author(s):  
I. Kovács

Abstract The papers of the series deal with experimental characterisation of mechanical as well as structural properties of different steel fibre reinforced concretes that can be used for several structural applications. An extensive experimental programme (six years) has been developed to investigate the effect of steel fibre reinforcement on the mechanical performance and structural behaviour of concrete specimens. Specimens and test methods were selected to be able to detect realistic behaviour of the material, representing clear effect on the structural performance. Material compositions, test methods, type of test specimens will be detailed in the presented paper (Part I). Furthermore, compressive strength (Part II), stress-strain relationship (Part II), splitting strength (Part III) and toughness (Part IV) will also be discussed. In the light of the motivation to determine the structural performances of 1D concrete structural element affected by steel fibre reinforcement, bending and shear behaviour (Part V) as well as serviceability state (Part VI) of steel fibre reinforced concrete beams will be analysed. Since normal force — prestressing force — can affectively be used to improve the structural performances of RC element flexural tests were carried out on prestressed pretensioned steel fibre reinforced concrete beams (Part VII). Moreover, focusing on the in-plane state of stresses for 2D structures, behaviour of steel fibre reinforced concrete deep beams in shear and steel fibre reinforced concrete slabs (Part VIII) in bending will be explained. Finally, based on the wide range of the experimental and analytical studies on the presented field, a new material model for the 1D uniaxial behaviour (Part IX) and its possible extension to the 3D case (Part X) will be described hereafter. All papers will put emphasis on the short literature review of the last four decades.


2014 ◽  
Vol 5 (1) ◽  
pp. 21-33
Author(s):  
I. Kovács

Abstract The present paper of a series deals with the experimental characterisation of compressive strength and compressive behaviour (stress-strain relationship) of different structural concrete containing different volume of steel fibre reinforcement (0 V%, 0.5V%, 1.0V%, 75 kg/m3, 150 kg/m3) and different configuration of steel fibres (crimped, hooked-end). Compressive tests were carried out on standard cube (150 mm × 150 mm × 150 mm) and cylinder (Ø = 150 mm, l = 300 mm) specimens considering random fibre orientation. Since the fibre orientation may significantly affect the compressive behaviour, test series were also performed on cylinders (Ø = 70 mm, l = 100 mm) drilled out of fibre reinforced concrete beams and prisms (100 mm × 100 mm × 240 mm) sawn out of steel fibre reinforced deep beams. Throughout the tests stress-strain relationships were registered on the standard cube and cylinder specimens as well. In conclusion, behaviour of steel fibre reinforced concrete was examined in compression taking into consideration different experimental parameters such as fibre content, type of fibres, fibre configuration, fibre orientation, size of specimens (size effect) and concrete mixture.


2017 ◽  
Vol 259 ◽  
pp. 35-40 ◽  
Author(s):  
Martin Tipka ◽  
Jitka Vašková

The paper deals with the determination of the modulus of elasticity in tension for cementitious composites and comparing these values with the values of modulus in compression. It describes several methods, which are usually used for determination of modulus of elasticity of concrete and fibre reinforced concrete. In the experimental program modulus of elasticity in compression and tension of various types of concrete and fibre reinforced concrete were compared. The classic test with prismatic specimens was used for determination of the modulus in compression; a new arrangement of uniaxial tension test of cementitious composites was used for determination of the modulus of elasticity in tension.


Sign in / Sign up

Export Citation Format

Share Document