Molecular Dynamics Simulations of Nanotube-Polymer Composites for Use as Thermal Interface Material

Author(s):  
S. Mahajan ◽  
G. Subbarayan ◽  
B. G. Sammakia ◽  
W. Jones

Thermal management in microelectronics is an important issue due to the projected increase in power dissipation in the electronic devices over the next 5–10 years. We seek a solution to this problem by exploring carbon nanotube-polymer matrix composites for use as thermal interface materials because of the reported high thermal conductivity and other remarkable thermal and mechanical properties of nanotubes. As an intermediate step to finding the composites’ conductivity, it is important to validate the use carbon nanotubes by calculating its diffusivity and conductivity first. This would facilitate later the estimating of important design parameters for thermal interface materials such as thermal diffusivity and conductivity. As polymer molecules are on the same size scale as nanotubes and the interaction at the polymer/nanotube interface is highly dependent on the molecular structure and bonding, Molecular Dynamic (MD) simulation is used to estimate the nano-scale properties. In this paper, until cell model consisting of a carbon nanotube was used and the diffusivity was measured. These findings would have implications in improving the thermal management efficiency and consequently improve the performance and reliability of future microelectronic devices.

2019 ◽  
Vol 6 (1) ◽  
pp. 2 ◽  
Author(s):  
Barath Kanna Mahadevan ◽  
Sahar Naghibi ◽  
Fariborz Kargar ◽  
Alexander A. Balandin

Temperature rise in multi-junction solar cells reduces their efficiency and shortens their lifetime. We report the results of the feasibility study of passive thermal management of concentrated multi-junction solar cells with the non-curing graphene-enhanced thermal interface materials. Using an inexpensive, scalable technique, graphene and few-layer graphene fillers were incorporated in the non-curing mineral oil matrix, with the filler concentration of up to 40 wt% and applied as the thermal interface material between the solar cell and the heat sink. The performance parameters of the solar cells were tested using an industry-standard solar simulator with concentrated light illumination at 70× and 200× suns. It was found that the non-curing graphene-enhanced thermal interface material substantially reduces the temperature rise in the solar cell and improves its open-circuit voltage. The decrease in the maximum temperature rise enhances the solar cell performance compared to that with the commercial non-cured thermal interface material. The obtained results are important for the development of the thermal management technologies for the next generation of photovoltaic solar cells.


2018 ◽  
Vol 6 (39) ◽  
pp. 10611-10617 ◽  
Author(s):  
Liuying Zhao ◽  
Huiqiang Liu ◽  
Xuechen Chen ◽  
Sheng Chu ◽  
Han Liu ◽  
...  

Thermal interface material (TIMs) pads/sheets with both high elasticity and low thermal resistance are indispensable components for thermal management.


Author(s):  
Kafil M. Razeeb ◽  
Alessio Munari ◽  
Eric Dalton ◽  
Jeff Punch ◽  
Saibal Roy

This work presents the thermal property study of single wall and multi wall carbon nanotubes (SWCNT and MWCNT) both in their purified and unpurified forms introduced to silicone elastomer to enhance the thermal diffusivity of this industrial polymer. An increase in thermal diffusivity was observed for incremental loading of both purified and unpurified single wall and multiwall CNT in epoxy at different percentages. An increase of thermal diffusivity as high as 130% was achieved for ∼2 wt% loading of both single wall and multi wall nanotubes. Electrical conductivity measurements showed a percolation threshold for 2% loading of multiwall CNT, below which the nanotube-epoxy composite behaved as an insulator — this is a key property for applications where electrical isolation is required. For single wall CNT-epoxy composite all the samples showed high resistance to the conduction of current. Thermal impedance measurements showed a strong dependency of contact resistance with percentage loading. Finally, the feasibility of deploying carbon nanotube-polymer composites as practical thermal interface materials for electronics thermal management is discussed.


Author(s):  
Wei Yu ◽  
◽  
Changqing Liu ◽  
Lin Qiu ◽  
Ping Zhang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1890
Author(s):  
Monika Rdest ◽  
Dawid Janas

This perspective article describes the application opportunities of carbon nanotube (CNT) films for the energy sector. Up to date progress in this regard is illustrated with representative examples of a wide range of energy management and transformation studies employing CNT ensembles. Firstly, this paper features an overview of how such macroscopic networks from nanocarbon can be produced. Then, the capabilities for their application in specific energy-related scenarios are described. Among the highlighted cases are conductive coatings, charge storage devices, thermal interface materials, and actuators. The selected examples demonstrate how electrical, thermal, radiant, and mechanical energy can be converted from one form to another using such formulations based on CNTs. The article is concluded with a future outlook, which anticipates the next steps which the research community will take to bring these concepts closer to implementation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1699
Author(s):  
Sriharsha Sudhindra ◽  
Fariborz Kargar ◽  
Alexander A. Balandin

We report on experimental investigation of thermal contact resistance, RC, of the noncuring graphene thermal interface materials with the surfaces characterized by different degree of roughness, Sq. It is found that the thermal contact resistance depends on the graphene loading, ξ, non-monotonically, achieving its minimum at the loading fraction of ξ ~15 wt %. Decreasing the surface roughness by Sq~1 μm results in approximately the factor of ×2 decrease in the thermal contact resistance for this graphene loading. The obtained dependences of the thermal conductivity, KTIM, thermal contact resistance, RC, and the total thermal resistance of the thermal interface material layer on ξ and Sq can be utilized for optimization of the loading fraction of graphene for specific materials and roughness of the connecting surfaces. Our results are important for the thermal management of high-power-density electronics implemented with diamond and other wide-band-gap semiconductors.


2015 ◽  
Vol 54 (9) ◽  
pp. 095102 ◽  
Author(s):  
Nuri Na ◽  
Kei Hasegawa ◽  
Xiaosong Zhou ◽  
Mizuhisa Nihei ◽  
Suguru Noda

Carbon ◽  
2019 ◽  
Vol 145 ◽  
pp. 725-733 ◽  
Author(s):  
Lin Qiu ◽  
Pu Guo ◽  
Qinyu Kong ◽  
Chong Wei Tan ◽  
Kun Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document