scholarly journals Electro-Aero-Mechanical Model of Piezoelectric Direct-Driven Flapping-Wing Actuator

2018 ◽  
Vol 8 (9) ◽  
pp. 1699 ◽  
Author(s):  
Takashi Ozaki ◽  
Kanae Hamaguchi

We present an analytical model of a flapping-wing actuator, including its electrical, aerodynamic, and mechanical systems, for estimating the lift force from the input electrical power. The actuator is modeled as a two-degree-of-freedom kinematic system with semi-empirical quasi-steady aerodynamic forces and the electromechanical effect of piezoelectricity. We fabricated actuators of two different scales with wing lengths of 17.0 and 32.4 mm and measured their performances in terms of the stroke/pitching angle, average lift force, and average consumed power. The experimental results were in good agreement with the analytical calculation for both types of actuators; the errors in the evaluated characteristics were less than 30%. The results indicated that the analytical model well simulates the actual prototypes.

2002 ◽  
Vol 715 ◽  
Author(s):  
P. Sanguino ◽  
M. Niehus ◽  
S. Koynov ◽  
P. Brogueira ◽  
R. Schwarz ◽  
...  

AbstractThe minority-carrier diffusion length in thin silicon films can be extracted from the electrically-detected transient grating method, EDTG, by a simple ambipolar analysis only in the case of lifetime dominated carrier transport. If the dielectric relaxation time, τdiel, is larger than the photocarrier response time, τR, then unexpected negative transient signals can appear in the EDTG result. Thin silicon films deposited by hot-wire chemical vapor deposition (HWCVD) near the amorphous-to-microcrystalline transition, where τR varies over a large range, appeared to be ideal candidates to study the interplay between carrier recombination and dielectric response. By modifying the ambipolar description to allow for a time-dependent carrier grating build-up and decay we can obtain a good agreement between analytical calculation and experimental results.


2014 ◽  
Vol 12 (2) ◽  
pp. 153-163
Author(s):  
Viktor Anishchenko ◽  
Vladimir Rybachenko ◽  
Konstantin Chotiy ◽  
Andrey Redko

AbstractDFT calculations of vibrational spectra of chlorophosphates using wide range of basis sets and hybrid functionals were performed. Good agreement between calculated and experimental vibrational spectra was reached by the combination of non-empirical functional PBE0 with both middle and large basis sets. The frequencies of the stretching vibrations of the phosphate group calculated using semi-empirical functional B3LYP for all basis sets deviate significantly from the experimental values. The number of polarization functions on heavy atoms was shown to be a key factor for the calculation of vibrational frequencies of organophosphates. The importance of consideration of all the stable rotamers for a complete assignment of fundamental modes was shown.


2020 ◽  
Vol 89 (3) ◽  
pp. 30901 ◽  
Author(s):  
Abdelkader Rjafallah ◽  
Abdelowahed Hajjaji ◽  
Fouad Belhora ◽  
Abdessamad El Ballouti ◽  
Samira Touhtouh ◽  
...  

More recently, the ferroelectric ceramic/polymer composites have been progressively replacing ferroelectric ceramics and polymers as they combine their interesting properties. Such as high compliance of polymers and high electromechanical coupling of ferroelectric ceramics those are required for piezoelectric transducer applications. At the same time, the ferroelectric ceramic/polymer composites formalism for predicting their energy-conversion capabilities is of both academic and industrial interest. The novelty of this paper is that the electrical power harvested by the PZT/PU polarized composite has been expressed in terms of the effective longitudinal piezoelectric coefficient (d33) of the composite via a parameter p related to the poling ratio. Besides, the parameter p, that is characterizing the PZT/PU composites with different longitudinal piezoelectric coefficients (d33), was evaluated. The other parameters of the electrical power expression were calculated using the Yamada model for the dielectric, piezoelectric and elastic constants. Finally, a good agreement was found between experience and model.


Author(s):  
Banjo Semire ◽  
Isaiah Ajibade Adejoro ◽  
Olusegun Ayobami Odunola

In this paper, we theoretically studied the geometries, stabilities, electronic and thermodynamic properties of bridged bithiophene S-oxide (BTO-X) derivates (with X = BH2, SiH2, S, S=O, and O) by using semi-empirical methods, ab-initio, and Density functional theory. The geometries and thermodynamic parameters calculated by PM3 were in good agreement with that of B3LYP/6-31G(d). The bandgap calculated by B3LYP/6-31G(d) ranged from 3.94eV (BTO-O)-3.16eV (BTO-BH2). The absorption λmax calculated suing B3LYP/6-31G(d) shifted to longer wavelength with X=BH2, SiH2, and S=O due to enhancement of π-conjugated system whereas, BTO-S and BTO-O shifted to shorter wavelengths as compared to dimmer thiophene S-oxide (2TO).


2021 ◽  
Author(s):  
Sayeed Ally

Abrasive jet micro-machining is a process that utilizes small abrasive particles entrained in a gas stream to erode material, creating micro-features such as channels and holes. Erosion experiments were carried out on aluminum 6061-T6, Ti-6A1-4V alloy, and 316L stainless steel using 50 μm A1₂O₃ abrasive powder launched at an average speed of 106 m/s. The dependence of erosion rate on impact angle was measured and fitted to a semi-empirical model. The erosion data was used in an analytical model to predict the surface evolution of unmasked channels machined with the abrasive jet at normal and oblique incidence, and masked channels at normal incidence. The predictions of the model were in good agreement with the measured profiles for unmasked channels at normal and oblique impact, and masked channels in at normal incidence up to an aspect ratio (channel depth/width) of 1.25. For the first time, it has been demonstrated that the surface evolution of features machined in metals can be predicted.


2020 ◽  
Vol 26 (3) ◽  
pp. 484-496
Author(s):  
Yu Yuan ◽  
Hendrix Demers ◽  
Xianglong Wang ◽  
Raynald Gauvin

AbstractIn electron probe microanalysis or scanning electron microscopy, the Monte Carlo method is widely used for modeling electron transport within specimens and calculating X-ray spectra. For an accurate simulation, the calculation of secondary fluorescence (SF) is necessary, especially for samples with complex geometries. In this study, we developed a program, using a hybrid model that combines the Monte Carlo simulation with an analytical model, to perform SF correction for three-dimensional (3D) heterogeneous materials. The Monte Carlo simulation is performed using MC X-ray, a Monte Carlo program, to obtain the 3D primary X-ray distribution, which becomes the input of the analytical model. The voxel-based calculation of MC X-ray enables the model to be applicable to arbitrary samples. We demonstrate the derivation of the analytical model in detail and present the 3D X-ray distributions for both primary and secondary fluorescence to illustrate the capability of our program. Examples for non-diffusion couples and spherical inclusions inside matrices are shown. The results of our program are compared with experimental data from references and with results from other Monte Carlo codes. They are found to be in good agreement.


2019 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
Nico Keller ◽  
Alexander Bauer ◽  
Thomas von Unwerth ◽  
Birgit Awiszus

The constructive design of a flow field layout and the channel cross section parameters from a metallic half- or bipolar plate can have a significant influence on the performance characteristics of a fuel cell. One important aspect in the dimensioning of the channel geometry of half plates is the technical forming feasibility. In this article, first an equation is presented, which enables an analytical calculation of the channel parameters. Hereby, continuing calculations with parameter variations will be possible. Furthermore, the formability of the channel geometry of metallic half plates is evaluated through numerical and experimental investigations. Based on the results, an analytical model approach will be derived that enables an appraisal of the formability from channel cross section contours in an early development state. As a final step, the results of the numerical investigations and the analytical calculation method are compared and evaluated with the results of experimental investigations and other publications. It will be shown, that the derived analytical model approach has a good approximation compared to the effects and results from the numerical and experimental analysis. In particular, the assessment of whether a channel cross section can be manufactured safely is a result with high probability of the analytical model approach. Imprecisions happen, especially in variants with extreme geometries, for example, with very small radii or a huge channel depth. For this kind of variations, the analytical model behaves too sensitively, which makes it more difficult to estimate the damage effects. However, at an early development state, the analytical model offers a good method to get a pre-evaluation of the formability of channel cross sections with a simultaneous parameter variation possibility.


2013 ◽  
Vol 437 ◽  
pp. 366-372
Author(s):  
Xiao Zhou Fan ◽  
Zhi Lin Zhang ◽  
Liang Chen

Folding motion is important for a flight creature using flapping wing mode, but it seldom used for flapping-wing robot. In this paper, we propose a new foldable flapping wing mechanism, which consists of spatial crank-rocker mechanism, parallelogram mechanism, and cam mechanism. We establish the kinematical models, calculate the optimal parameters, and set up the virtual prototype using 3D software. The tracks of wingtip and the comparison between foldable and unfoldable flap wing show that folding motion can improve lift force obviously.


Author(s):  
Ankur M. Mehta ◽  
Kristofer S. J. Pister

This work examines the design of legs for a walking microrobot. The parameterized force-displacement relationships of planar serpentine flexure-based two degree-of-freedom legs are analyzed. An analytical model based on Euler-Bernoulli beam theory is developed to explore the design space, and is subsequently refined to include contact between adjacent beams. This is used to determine a successful leg geometry given dimensional constraints and actuator limitations. Standard comb drive actuators that output 100 μN of force over a 15 μm bi-directional throw are shown able to drive a walking gait with three legs on a 1 cm2 silicon die microrobot. If the comb drive suspensions cannot withstand the generated reaction moments, an alternate pivot-based leg linkage is proposed.


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Jim Meagher ◽  
Xi Wu ◽  
Chris Lencioni

A two-complex-degrees-of-freedom model is developed and compared to experimental data for various amounts of rotor bow and its orientation to mass imbalance of the rotor. The equation of motion is developed by adding constant forces that rotate with the rotor to a Bently-Muszynska two-mode isotropic rotor model with a plane journal bearing. Diagnostic information discernable from probes at the bearing is explored and compared to midspan response, where previous research has concentrated. The model presented also extends earlier work by representing the effect of a nonrigid bearing. Good agreement between the analytical model and experiment demonstrates that the analysis presented can be useful to diagnose and balance residual shaft bow from probes located at the bearings, where vibration data are typically more available than midspan probes.


Sign in / Sign up

Export Citation Format

Share Document