Design of a Foldable Flapping Mechanism

2013 ◽  
Vol 437 ◽  
pp. 366-372
Author(s):  
Xiao Zhou Fan ◽  
Zhi Lin Zhang ◽  
Liang Chen

Folding motion is important for a flight creature using flapping wing mode, but it seldom used for flapping-wing robot. In this paper, we propose a new foldable flapping wing mechanism, which consists of spatial crank-rocker mechanism, parallelogram mechanism, and cam mechanism. We establish the kinematical models, calculate the optimal parameters, and set up the virtual prototype using 3D software. The tracks of wingtip and the comparison between foldable and unfoldable flap wing show that folding motion can improve lift force obviously.

2017 ◽  
Vol 10 (1) ◽  
pp. 70-84 ◽  
Author(s):  
Wenqing Yang ◽  
Liguang Wang ◽  
Bifeng Song

This paper describes the design and development of the Dove, a flapping-wing micro air vehicle (FWMAV), which was developed in Northwestern Polytechnical University. FWMAVs have attracted international attentions since the past two decades. Since some achievements have been obtained, such as the capability of supporting an air vehicle to fly, our research goal was to design an FWMAV that has the ability to accomplish a task. Main investigations were presented in this paper, including the flexible wing design, the flapping mechanism design, and the on-board avionics development. The current Dove has a mass of 220 g, a wingspan of 50 cm, and the ability of operating fully autonomously, flying lasts half an hour, and transmitting live stabilized color video to a ground station over 4 km away.


2013 ◽  
Vol 712-715 ◽  
pp. 2272-2276
Author(s):  
Zhi Lan ◽  
Zhen Yan ◽  
Jian Jun Xu

A novel rehabilitation robot for upper limb, which can implement single joint and multi-joint complex motions and provide activities of daily living (ADL) training for hemiplegic patients, was presented. Based on the software ADAMS and the software MATLAB/Simulink, the virtual prototype and the platform of co-simulation of mechanical-electrical system were set up. On the platform of co-simulation, the rehabilitation robots kinematics, dynamics and control have been simulated, and each joints kinematic parameters, torque can be obtained, and parameters of controller can be also confirmed. It offered reliance for the actual intellectual control of the rehabilitation robot.


Author(s):  
Lun Li ◽  
Zhili Zhou ◽  
Jishun Li ◽  
Yujun Xue

The virtual reality is a multi-functional, interactive and immersible technology. As an advanced engineering design technology, the virtual reality technology (VRT) has been widely used in large mining machinery design and manufacturing. The system is based on DIVISION Mockup2000i2 software. Virtual prototype of the Tunnel Boring Machine (TBM) is studied in this paper. In addition, the movement simulation of TBM is completed in DIVISION Mockup2000i2. Firstly, CATIA software is adopted to build the parts of TBM. The TBM is assembled in CATIA too. Secondly, the THEOREM software is applied to convert the assembled model of TBM to another format which can be identified in DIVISION MOCKUP2000i2 software. In order to make the TBM image living, life-like and easy to browse, the light of surface, virtual materials and landmark scenes are set up in DIVISION MOCKUP2000i2 software environment. All motion parameters of the parts are defined before the simulation. Then, the virtual movement simulation of TBM components is analyzed with the behaviors property of MOCKUP. The virtual movement of cutting wheel, screw conveyor machinery and the door of mud out are studied. The virtual movement of segments and segment erector machine are completed by setting up virtual parts and virtual event. Five segments are fixed accurately in a cycle. The relations and interference of the parts movement are examined simultaneity. The hotkey is defined before the simulation, which can trigger the continuous implementation of virtual motion. In addition, a virtual voice is used to enhance the performance of movement simulation. The virtual prototype of TBM being set up and simulated will have positive significance for design inspection, structural analysis and product introduction without TBM physical prototype being manufactured.


2013 ◽  
Vol 18 (1) ◽  
pp. 155-168 ◽  
Author(s):  
N. O. Pérez-Arancibia ◽  
J. P. Whitney ◽  
R. J. Wood

Author(s):  
Nestor O. Perez-Arancibia ◽  
John P. Whitney ◽  
Robert J. Wood

2017 ◽  
Vol 9 (3) ◽  
pp. 187-197 ◽  
Author(s):  
Quoc V Nguyen ◽  
Woei L Chan ◽  
Marco Debiasi

Experimental investigation of wing flexibility on vertical thrust generation and power consumption in hovering condition for a hovering Flapping-Wing Micro Air Vehicle, namely FlowerFly, weighing 14.5 g with a 3 g onboard battery and having four wings with double wing clap-and-fling effects, was conducted for several wing configurations with the same shape, area, and weight. A data acquisition system was set up to simultaneously record aerodynamic forces, electrical power consumption, and wing motions at various flapping frequencies. The forces and power consumption were measured with a loadcell and a custom-made shunt circuit, respectively, and the wing motion was captured by high-speed cameras. The results show a phase delay of the wing tip displacement observed for wings with high flexible leading edge at high frequency, resulting in less vertical thrust produced when compared with the wings with less leading edge flexibility at the same flapping frequency. Positive wing camber was observed during wing flapping motion by arranging the wing supporting ribs. Comparison of thrust-to-power ratios between the wing configurations was undertaken to figure out a wing configuration for high vertical thrust production but less power consumption.


2011 ◽  
Vol 48-49 ◽  
pp. 300-303
Author(s):  
Yun Liu ◽  
Zhi Sheng Jing ◽  
Shan Chao Tu ◽  
Ming Hao Yu ◽  
Guo Wei Qin

The characteristics and the application prospect are analyzed. It is concluded that bionic flapping-wing flying has better lift fore generation efficiency, which is the development trend of aerial vehicles. By the scaling effect analysis on bionic flying mechanism, it is presented that bionic flying could be realized more easily when the sizes are decreased. In this article, the flying mechanism of inset and Aves was studied and the high lift force mechanism of flapping-winging was concluded. In order to make the flapping-flying easier, we design a new type flapping-flying mechanism. A set of flapping-wing move comparatively. It can provide lift force all the time. We test the lift force in the condition of different speed and different frequency. The lift effect is validated on a simple suspend flight device. An experimental platform to measure the aerodynamic force is devised and developed by ourselves. On this equipment, the aerodynamics force of the prototype is test. The result is that enhancing speed or frequency can improve lift force in evidence


2013 ◽  
Vol 365-366 ◽  
pp. 253-256
Author(s):  
Jie Qin ◽  
Ming Yu Zhang

A correction mechanism prototype is set up on the basis of ADAMS platform. Under the condition that the projectile is in the set flight state, the changing law and affecting factors of general kinetic motion characteristics of the correction mechanism virtual prototype are surveyed through motion analysis of resistance.


Sign in / Sign up

Export Citation Format

Share Document