scholarly journals Noise-Canceling Office Chair with Multiple Reference Microphones

2018 ◽  
Vol 8 (9) ◽  
pp. 1702
Author(s):  
László Sujbert ◽  
Attila Szarvas

Office employees are exposed to acoustic noise, especially in an open office environment. Passive or active headsets sufficiently reduce the level of noise, but their long-time wear is uncomfortable. The paper presents an active headrest system built into a chair. Feedforward control is utilized with multiple reference microphones, and flexible gooseneck microphones serve as error sensors. The reference sensors surround the chair, allowing the suppression of sound waves arriving from any direction. The concept of multiple reference control has been tested by extensive experiments showing that multiple reference signals help to increase the suppression in normal rooms where reverberation occurs, even if only one noise source is present. The preliminary experiments are completed by a series of simulations aiming to explore the zones of quiet at the user’s ears. The paper introduces the construction details of the noise-canceling chair: The two loudspeakers are controlled by the signals of two error microphones and four reference signals. The controller is based on the normalized filtered error least mean squared algorithm, implemented on an Analog Devices ADSP-21262 signal processor-based hardware. Experimental results are reported that show the efficient suppression of tonal, as well as broadband disturbances.

Author(s):  
Sicheng Yi ◽  
Qingze Zou

In this paper, we propose a finite-impulse-response (FIR)-based feedforward control approach to mitigate the acoustic-caused probe vibration during atomic force microscope (AFM) imaging. Compensation for the extraneous probe vibration is needed to avoid the adverse effects of environmental disturbances such as acoustic noise on AFM imaging, nanomechanical characterization, and nanomanipulation. Particularly, residual noise still exists even though conventional passive noise cancellation apparatus has been employed. The proposed technique exploits a data-driven approach to capture both the noise propagation dynamics and the noise cancellation dynamics in the controller design, and is illustrated through the experimental implementation in AFM imaging application.


Akustika ◽  
2021 ◽  
pp. 22-28
Author(s):  
E.V. Fedoseeva ◽  
V.V. Bulkin ◽  
M.V. Kalinichenko

To increase the efficiency of acoustic screens when protecting against acoustic noise, anti-diffractors are used to reduce the diffraction level on the upper edge of the screen. The aim of the work is to refine the mathematical model used to assess noise protection efficiency with the help of an acoustic screen with an installed one-sided flat-type anti-diffractor. The well-known techniques based on the principle of the amplitude dependence of the sound wave intensity from two sources are analyzed: a point-type noise source and a secondary cylindrical wave source - the screen edge, on which the sound wave is diffracted. Taking into account that the change in the distance between the anti-diffractor and the working point in the acoustic shadow zone is associated with a change in the diffraction angle, it is proposed to evaluate the acoustic screen effectiveness by comparing the initial sound wave propagation paths. An approach to a mathematical calculation model formation is proposed, in which the diffraction point located at the intersection of two components of the wave path to the operating point is considered to be the location of the sound wave secondary source in the area of the screen upper edge: from the noise source to the flat-type anti-diffractor installed on the upper edge of the screen, and from the anti-diffractor rear edge to the operating point. Relationships that make it possible to solve the problem of analytical assessment of noise-protective acoustic screens' effectiveness when installing anti-diffractors on their upper face in the form of flat hinged panels oriented towards the acoustic shadow are obtained.


2011 ◽  
Vol 474-476 ◽  
pp. 2247-2252
Author(s):  
Jia Zhang ◽  
Hai Yan Zhang ◽  
Jin Na Lv ◽  
Yan Chang Liu

In many applications of wireless sensor network (WSN), it is essential to ensure that sensors can determine their location, even in the presence of malicious adversaries. However, almost all the localization algorithms need the location information of reference nodes to locate the unknown nodes. When the location information is tempered by the attacks, the accuracy of these algorithms will degrade badly. We present a novel mechanism for secure localization. The mechanism aims to filter out malicious reference signals on the basis of the normal distribution trait among multiple reference signals. This will ensure each node to obtain correct information about its position in the presence of attackers. In this paper, a simulation circumstance which might be attacked is constructed to compare the improved algorithm with original one. The experiment results demonstrate that the proposed mechanism can effectively survive malicious attacks.


Author(s):  
Gary G. Podboy

An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement.


AIAA Journal ◽  
2002 ◽  
Vol 40 (7) ◽  
pp. 1382-1387 ◽  
Author(s):  
Ronald J. Hugo ◽  
Scott R. Nowlin ◽  
Ila L. Hahn ◽  
Frank D. Eaton ◽  
Kim A. McCrae

2021 ◽  
Vol 312 ◽  
pp. 08007
Author(s):  
Marco Ciampolini ◽  
Lorenzo Bosi ◽  
Luca Romani ◽  
Andrea Toniutti ◽  
Matteo Giglioli ◽  
...  

Active Noise Control (ANC) has been considered a promising technology for the abatement of acoustic noise from the mid-20th century. Feedback and Feedforward ANC algorithms, based on the destructive interference principle applied to acoustic waves, have been developed for different applications, depending on the spectrum of the noise source. Feedback ANC algorithms make use of a single control microphone to measure an error signal which is then employed by an adaptive filter to estimate the noise source and generate an opposite-phase control signal. The Fx-LMS (Filtered-X Least Mean Square) algorithm is mostly adopted to update the filter. Feedback ANC systems have proven to be effective for the abatement of low-frequency quasi-steady noises; however, different challenges must be overcome to realize an effective and durable system for high-temperature application. This paper aims at experimentally assessing the feasibility of a Feedback Fx-LMS ANC system with off-line Secondary Path estimation to be used in mid-size diesel gensets for the reduction of the exhaust noise. Several solutions are proposed, including the mechanical design, the development of the Fx-LMS algorithm in the LabVIEW FPGA programming language, and the key features required to prevent parts from thermal damage and fouling. The developed prototype was implemented on a 50-kW diesel genset and tested in a semi-anechoic chamber. The noise abatement inside the exhaust pipe and at different measurement points around the machine was evaluated and discussed, showing good potential for improving the acoustic comfort of genset users.


Sign in / Sign up

Export Citation Format

Share Document