scholarly journals Morphology and Structure of Ni/Zr0.84Sc0.16O1.92 Electrode Material Synthesized via Glycine-Nitrate Combustion Method for Solid Oxide Electrochemical Cell

2019 ◽  
Vol 9 (2) ◽  
pp. 264 ◽  
Author(s):  
Renz Garcia ◽  
Rinlee Cervera

Nickel oxide and Sc-doped ZrO2 electrode material with a 1:1 wt % composition of NiO and Zr0.84Sc0.16O1.92 was synthesized via a single-step glycine-nitrate combustion method. Different glycine to nitrate (g/n) molar ratios of 0.27, 0.54, and 1.1 were used to investigate its effect on the structural, morphological, and electrical properties of the heat-treated samples. X-ray diffraction (XRD) patterns of the as-sintered samples for all the g/n ratios were indexed to cubic phases of NiO and ScSZ. Upon reduction at 700 °C, NiO was fully reduced to Ni. In-situ XRD patterns showed that the composite Ni/Zr0.84Sc0.16O1.92 electrode material retains its cubic structure at intermediate temperatures from 500 °C to 800 °C. High magnification scanning electron microscopy (SEM) images revealed that nanoparticles of Ni are also formed and situated at the surfaces of ScSZ grains, apart from agglomerated submicron particles of Ni. SEM and electron-dispersive spectroscopy mapping revealed interconnected grains of ScSZ oxide-ion conducting phase. From the calculated conductivity based on electrochemical impedance spectroscopy results, the 0.27 g/n ratio showed an order of magnitude-higher total conductivity among the other prepared samples.


2021 ◽  
Vol 11 (1) ◽  
pp. 96-104
Author(s):  
Ruziel Larmae Gimpaya ◽  
Shari Ann Botin ◽  
Rinlee Butch Cervera

An all-solid-state Lithium button cell with Ga-doped Li7La3Zr2O12 (Ga-LLZO) as solid electrolyte, LiFePO4-based as cathode, and Li metal as anode has been successfully fabricated and characterized. The solid electrolyte was first optimized to obtain a high total conductivity. Different compositions of Li7-3xGaxLa3Zr2O12, where x =0, 0.1, 0.2, and 0.3. Li7La3Zr2O12 (LLZO) were synthesized using solid-state reaction and were characterized for its structural, morphological, electrical conductivity properties. XRD patterns of all sintered samples showed that all of the major peaks can be indexed to a cubic-phased garnet LLZO. SEM images revealed a densified sintered samples with relative densities of about 90% for all samples. Among the different studied compositions, the Ga-doped LLZO with x = 0.1 achieved the highest total conductivity of about 2.03 x 10-4 Scm-1 at 25oC, with an activation energy of 0.31 eV. From this solid electrolyte, an all-solid-state Lithium battery, 2032 button cell, was fabricated using LiFePO4-based cathode and Lithium metal as the anode. Charging and discharging characteristics were performed at 1C, 0.5C, and 0.2C rates. The results showed a good retention of coloumbic efficiency even after 50 cycles of charge and discharge. The capacity retention is about 15-20% after 50 cycles. The best performance of the coin cell battery revealed an initial specific discharging capacity of about 140 mAh/g using C/5 rate.



2018 ◽  
Vol 765 ◽  
pp. 49-53 ◽  
Author(s):  
Abdalla Mohammed Abdalla ◽  
Shahzad Hossain ◽  
Nikdalila Radenahmad ◽  
Pg Mohammad Iskandar Petra ◽  
Mahendra Rao Somalu ◽  
...  

The novel perovskite oxide series of Sm1-xZrxFe1-yMgyO3 (x,y = 0.5, 0.7, 0.9) were synthesized by solid state reaction method. X-ray diffraction (XRD), Rietveld refinement, scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and conductivity analysis were carried out. XRD patterns of sintered materials revealed the shifted Bragg reflection to higher angle for the higher content of Zr and Mg. This is related to the ionic size of the dopant elements. Rietveld refinement showed that all compounds crystallized in cubic space group of Fm-3m. SEM images showed that the grains were well defined with highly dense surfaces makes it potential as an electrolyte material in solid oxide fuel cells (SOFCs) or gases sensors. Impedance spectroscopy at 550-800 °C shows that conductivity is higher at higher temperature. Sm0.5Zr0.5Fe0.5Mg0.5O3 shows the highest conductivity of 5.451 × 10-3 S cm-1 at 800 °C. It was observed that 50% molar ratio of Mg and Zr doping performed highest conductivity.



2019 ◽  
Vol 801 ◽  
pp. 205-210
Author(s):  
James Francis Imperial ◽  
Rinlee Butch Cervera

Electrode materials require a good porosity and a fine microstructure in order to maximize the triple phase boundary between the electronic conductor, ionic conductor and the gases involved in the reaction. In this study, NiO/YSZ composite, one of the most desired candidates as a cathode material for solid oxide electrolysis cells, was synthesized via glycine-nitrate combustion process. The composite powder was mixed with carbon black pore former in order to increase the porosity of NiO/YSZ. The samples were sintered at 1300 °C and subsequently reduced. X-ray diffraction patterns of the as-reduced samples confirm the transformation of NiO to Ni phase. Scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS) images were able to confirm the reduction of NiO to Ni. From the results of the electrochemical impedance spectroscopy analysis, the total conductivity of Ni/YSZ at 700 °C were about 1.37 × 10-1 and 1.12 × 10-1 S/cm for the unmodified and carbon black-modified samples, respectively.



2017 ◽  
Vol 865 ◽  
pp. 36-42
Author(s):  
Hanis Mohd Yusoff ◽  
Faridatul Akmar Rafit ◽  
Fatin Izwani Mohamad ◽  
Norhafiefa Hassan ◽  
Adibah Izzati Daud

This study highlights on a convenient and optimised method for the preparation of nanocrystalline magnesium oxide (MgO) catalyst via sol-gel combustion method. Nanocrystalline MgO was prepared by using polyvinyl alcohol (PVA) as a complexing agent and metal nitrate (Mg (NO 3 )2.6H2O) as a precursor. The obtained MgO powder was calcined at 200 °C, 400 °C, 600 °C and 800 °C. All the MgO calcined samples including commercial MgO were characterised using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-Ray diffraction (XRD) and N2 adsorption-desorption Brunauer–Emmett–Teller (BET). From FTIR analysis, the appearance of a peak at 3700 cm-1 represent the O-H stretching bonded with Mg and the broad absorption peak at 3421 cm-1 indicates O-H stretching band which is due to the absorption of moisture from the surrounding. (BET) results indicate the MgO sample that has been calcined at 400 °C shows the largest surface area. SEM images show there is porosity in all MgO powder. While XRD patterns revealed that higher temperature of calcination gives higher crystallinity of the MgO samples.



2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Leila Torkian ◽  
Maryam Daghighi ◽  
Zahra Boorboor

Nano-sized CoxMg1−xAl2O4(x= 0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1) inorganic pigments were synthesized via combustion method usingβ-alanine, as a single and novel fuel, at 800°C in open furnace. The obtained powders were characterized by means of X-ray diffraction (XRD), energy dispersive X-ray (EDX) elemental analysis, diffuse reflectance spectrum (DRS), CIEL*a*b* color measurements, and scanning electron microscope (SEM). XRD patterns show that all calcined powders have single phase cubic spinel structure. EDX analysis revealed the composition of desired spinels. The diffuse reflectance spectra of the CoxMg1−xAl2O4(x> 0) pigments confirmed the presence of tetrahedrally coordinated Co2+ions in the spinel lattice. The colorimetric data pointed out the formation of blue pigments (forx> 0), corresponding to highly negative values ofb*, and the bluest color was produced forx= 0.8 and 1. SEM images showed nanoparticles with less than 30 nm crystallite size and flakes-like appearance of all synthesized powders.



2000 ◽  
Vol 628 ◽  
Author(s):  
G. González ◽  
P. J. Retuert ◽  
S. Fuentes

ABSTRACTBlending the biopolymer chitosan (CHI) with poly (aminopropilsiloxane) oligomers (pAPS), and poly (ethylene oxide) (PEO) in the presence of lithium perchlorate lead to ion conducting products whose conductivity depends on the composition of the mixture. A ternary phase diagram for mixtures containing 0.2 M LiClO4 shows a zone in which the physical properties of the products - transparent, flexible, mechanically robust films - indicate a high degree of molecular compatibilization of the components. Comparison of these films with binary CHI-pAPS nanocomposites as well as the microscopic aspect, thermal behavior, and X-ray diffraction pattern of the product with the composition PEO/CHI/pAPS/LiClO4 1:0.5:0.6:0.2 molar ratio indicates that these films may be described as a layered nanocomposite. In this composite, lithium species coordinated by PEO and pAPS should be inserted into chitosan layers. Electrochemical impedance spectroscopy measurements indicate the films are pure ionic conductors with a maximal bulk conductivity of 1.7*10-5 Scm-1 at 40 °C and a sample-electrode interface capacitance of about 1.2*10-9 F.



Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 293
Author(s):  
Liangzhu Zhu ◽  
Anil V. Virkar

Na-β″-alumina (Na2O.~6Al2O3) is known to be an excellent sodium ion conductor in battery and sensor applications. In this study we report fabrication of Na- β″-alumina + YSZ dual phase composite to mitigate moisture and CO2 corrosion that otherwise can lead to degradation in pure Na-β″-alumina conductor. Subsequently, we heat-treated the samples in molten AgNO3 and LiNO3 to respectively form Ag-β″-alumina + YSZ and Li-β″-alumina + YSZ to investigate their potential applications in silver- and lithium-ion solid state batteries. Ion exchange fronts were captured via SEM and EDS techniques. Their ionic conductivities were measured using electrochemical impedance spectroscopy. Both ion exchange rates and ionic conductivities of these composite ionic conductors were firstly reported here and measured as a function of ion exchange time and temperature.



2013 ◽  
Vol 716 ◽  
pp. 78-83 ◽  
Author(s):  
Hui Min Zhang ◽  
Fang Guan ◽  
Ai Min Chang ◽  
Li Jun Zhao

Composite ceramics made of spinel structure NiMn2O4 and CaO-doped perovskite structure LaMnO3 were prepared by a conventional solid state reaction and sintered at different temperatures. The XRD patterns have shown that the major phases presented in the sintered samples are NiMn2O4 compounds with the spinel structure, La1-xCaxMnO3 with the perovskite structure and NiO with a monoclinic structure. SEM images show that the density and grain size of the composite ceramics increases with sintered temperature increasing. The electrical resistivity of the composite ceramics at 25°C is found to change significantly depending on the CaO content, while the thermal constant B is still reasonably large in the range of 2400 to 3000 K. For the composition x = 0.1, the composite with a low electrical resistivity (ρ25°C=4.46Ω·cm) and moderate B value (B25/50=2762K) was obtained. These composites could be applied as potential candidates for NTC thermistors in the suppression of the inrush current.



2011 ◽  
Vol 391-392 ◽  
pp. 973-977
Author(s):  
Jing Mao ◽  
Ke Hua Dai ◽  
Yu Chun Zhai

Li(Ni1/3Co1/3Mn1/3)O2material with high rate capability was synthesized by a novel gel-combustion method using polyvinylpyrrolidone as a polymer chelating agent and a fuel. X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) were used to study the structure, morphology and element distribution of the Li(Ni1/3Co1/3Mn1/3)O2material. XRD analysis showed that all samples were α-NaFeO2structure and Li(Ni1/3Co1/3Mn1/3)O2prepared at 900 °C had the highest c/a of 4.977 indicating the highest layered-ness. EDS scan demonstrated that the precursor was homogeneous. SEM images indicated all samples were well crystallized. Charge and discharge tests showed all samples had good rate capability. Among them, Li(Ni1/3Co1/3Mn1/3)O2prepared at 900 °C had the highest capacity and the best rate capability. It delivered 162.1 mAh•g−1at 0.25 C between 2.5 and 4.3 V and the capacity retention was about 81% compared to that of 0.25C rate.



2017 ◽  
Vol 727 ◽  
pp. 327-334
Author(s):  
Yan Wang ◽  
Jun Wang ◽  
Xiao Fei Zhang ◽  
Ya Qing Liu

La-Nd co-doped barium hexaferrites, Ba0.7(LamNdn)0.3Fe12O19 (D-BaM), were successfully prepared by sol-gel method. PANI / D-BaM composites were synthesized by in-situ polymerization in solution. The structure, morphology and properties of samples have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), four-probe conductivity tester and vector network analyzer. The XRD patterns showed that the crystal structure of all the samples exist as M-type phases. The SEM images revealed that the particles presented a hexagonal platelet-like morphology. The magnetic properties could be improved by substitutions of La and Nd ions. The saturation magnetization (Ms) and coercive force (Hc) increased with the change of La / Nd ratio to the maximum at La / Nd = 3:1. The doped particles have also been embedded in conductive PANI to prepare electromagnetic materials, and the conductivity kept on the order of 10-2. The microwave absorbing properties of composites at 30 MHz-6 GHz improved obviously, the peak value of reflection loss could reach-7.5 dB.



Sign in / Sign up

Export Citation Format

Share Document