scholarly journals Convergence Optimization and Verification for Single-Channel Remote Parameter Control of a Nonlinear System

2019 ◽  
Vol 9 (3) ◽  
pp. 549
Author(s):  
Meng Li ◽  
Yong Zhang

In this paper, the theory of RPC (remote parameter control) iteration process of linear situation without and with iteration coefficient as well as nonlinear situation with coefficient is analyzed. The influence of iteration coefficient on iterative convergence control condition is analyzed. Two kinds of optimized control method for iteration coefficient based on the system transfer function estimation are proposed. A lightweight motorcycle and electro-hydraulic servo road vibration test bench are used to verify the feasibility of the optimized control methods for the reproduction of road profiles of SISO (single-input, single-output) system. According to the experiment result, which is the RMS (root mean square) of the NSRE (normalized spectrum of response error) of system, the convergent precision, convergent speed and iteration stability are discussed to present the advantage and disadvantage of the optimized control methods. Compared with three commonly used manual methods, the result shows the rapidity and stability of optimized control methods.

Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1371 ◽  
Author(s):  
Ha Le Nhu Ngoc Thanh ◽  
Mai The Vu ◽  
Nguyen Xuan Mung ◽  
Ngoc Phi Nguyen ◽  
Nguyen Thanh Phuong

This paper presents a lumped perturbation observer-based robust control method using an extended multiple sliding surface for a system with matched and unmatched uncertainties. The fundamental methodology is to apply the multiple surfaces to approximate the unknown lumped perturbations simultaneously influencing on a nonlinear single input–single output (SISO) system. Subsequently, a robust controller, based on the proposed multi-surface and the approximated values, is designed to highly improve the control performance of the system. A general stability of the lumped perturbation observer and closed-loop control system is obtained through the Lyapunov theory. Results of a numerical simulation of an illustrative example demonstrate the soundness of the proposed algorithm.


2021 ◽  
Author(s):  
Qiandiao Wei ◽  
He Xu ◽  
Siqing Chen ◽  
Weiwang Fan

Abstract Soft robots driven by pressurized fluid have recently been attracted more attention and achieved a variety of innovative applications in bionics, medical surgery, rehabilitation, search, and rescue system. And they have been demonstrated to be able to perform many different tasks, especially in some conditions of demand a high degree of compliance. Generally, they consisted of multiple actuate channels that require independent works. Consequently, a mass of pressure regulators and input pipelines are demanded, which will increase the complexity of the control system. To solve this problem, we propose a new pressure control method inspired by the control bus of electronic interface technology in this paper. An addressable pressure control bus system based on band-pass valve (BPV) and square wave of pressure (control signal) was designed. It consisted of a pressure supply source and an addressing signal, they are controled by two regulators, respectively. One of the pressure pipelines serves as the control bus to transmit the control pressure signal, which plays an addressing signal role in the system. The other serves as the pressure supply source of the multi-channel actuators. The BPV can be set to different opening pressure bands to realize the setting of diverse outputs address codes on the bus. This method discovered the work mode of double-input multi-output, which will get rids of the traditional control method of single-input single-output. In this paper, we designed the BPV and tested its function. To demonstrate the feasibility of this method proposed, a control system with two output ports was established. The result has shown that the output port can be selected by the pressure square wave signal, which realizes the function of single input multiple outputs. It reduces the complexity of the control strategy of the fluid control system.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
R. Jeyasenthil ◽  
Yang-Sup Lee ◽  
Seung-Bok Choi

In this work, a new integrated fault detection and control (IFDC) method is presented for single-input/single-output systems (SISOs). The idea is centered on comparing the closed-loop output between the faulty system and fault-free one to schedule/switch the feedback control once the fault occurs. The problem addressed in this work is the output disturbance rejection. The set of feedback controllers are designed using quantitative feedback theory (QFT) for fault-free and faulty systems. In the context of QFT-based IFDC, the proposed active approach is novel, simple, and easy to implement from an engineering point of view. The efficiency of the proposed method is assessed on a flexible smart structure system featuring a piezoelectric actuator. The actuator and sensor faults considered are the multiplicative type with both fixed and time-varying magnitudes. In the fixed magnitude fault case, the actuator/sensor output delivering capability is reduced by 50% (multiplying a factor of 0.5 to its actual output), while in the time-varying magnitude case, it becomes 60% to 50% for a particular time interval. In both cases, the proposed control method identifies the fault and activates the required controller to satisfy the specification with less control effort as opposed to the passive QFT design featured by faulty system design alone.


1990 ◽  
Vol 112 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Kamal Youcef-Toumi ◽  
Osamu Ito

This paper focuses on the control of systems with unknown dynamics and deals with the class of systems described by x˙=f(x,t) + h(x,t) + B(x,t)u + d(t) where h(x,t) and d(t) are unknown dynamics and unexpected disturbances, respectively. A new control method, Time Delay Control (TDC), is proposed for such systems. Under the assumption of accessibility to all the state variables and estimates of their delayed derivatives, the TDC is characterized by a simple estimation technique that evaluates a function representing the effect of uncertainties. This is accomplished using time delay. The control system’s structure, stability and design issues are discussed for linear time-invariant and single-input-single-output systems. Finally, the control performance was evaluated through both simulations and experiments. The theoretical and experimental results indicate that this control method shows excellent robustness properties to unknown dynamics and disturbances.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Lakhdar Guenfaf ◽  
Mohamed Azira

Control of a multi-degree-of-freedom structural system under earthquake excitation is investigated in this paper. The control approach based on the Generalized Minimum Variance (GMV) algorithm is developed and presented. Our approach is a generalization to multivariable systems of the GMV strategy designed initially for single-input-single-output (SISO) systems. Kanai-Tajimi and Clough-Penzien models are used to generate the seismic excitations. Those models are calculated using the specific soil parameters. Simulation tests using a 3DOF structure are performed and show the effectiveness of the control method.


2014 ◽  
Vol 681 ◽  
pp. 90-95
Author(s):  
Ti Xian Tian ◽  
Hong Zhou Jiang ◽  
Jing Feng He ◽  
Zhi Zhong Tong

A novel design method for modal space controller with dynamic pressure feedback is proposed for hydraulically-driven Stewart platforms. By exploiting properties of the joint-space inverse mass matrix, an analytic modal matrix is derived which can be used for transforming the highly coupled multiple-input multiple-output (MIMO) dynamics into six independent single-input single-output (SISO) channels in modal space. Based on classical control method, the modal space controller with dynamic pressure feedback is implemented and used to broaden the bandwidth of each channel in modal space separately. The effectiveness of the proposed method is examined through experiment.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Shu-zhi Gao ◽  
Jing Yang ◽  
Jie-sheng Wang

PVC stripping process is a kind of complicated industrial process with characteristics of highly nonlinear and time varying. Aiming at the problem of establishing the accurate mathematics model due to the multivariable coupling and big time delay, the dynamic fuzzy neural network (D-FNN) is adopted to establish the PVC stripping process model based on the actual process operation datum. Then, the PVC stripping process is decoupled by the distributed neural network decoupling module to obtain two single-input-single-output (SISO) subsystems (slurry flow to top tower temperature and steam flow to bottom tower temperature). Finally, the PID controller based on BP neural networks is used to control the decoupled PVC stripper system. Simulation results show the effectiveness of the proposed integrated intelligent control method.


2020 ◽  
Vol 68 (5) ◽  
pp. 358-366
Author(s):  
H.E. Oh ◽  
W.B. Jeong ◽  
C. Hong

When multiple sources contribute competitively to the noise level, multi-channel control architecture is needed, leading to more cost and time for control computation. We, hence, are concerned with a single-channel control method with a single-reference signal obtained from a linear combination of the multiple source signals. First, we selected 3 source signal sensors for the reference signals and the error sensor, selected a proper actuator and designed the controllers: 3 cases of single-channel feedforward controllers with a single-reference signal respectively from the source signals, a multi-channel feedforward controller with the reference signals from the source signals, and the proposed controller with the reference signal from weighted sum of the source signals. The weighting factors and the filter coefficients of the controller were determined by the FxLMS algorithm. An experiment was then performed to confirm the effectiveness of the proposed method comparing the control performance with other methods for a tower air conditioner. The overall sound pressure level (SPL) detected by the error sensor is compared to evaluate their performance. The reduction in the overall SPL was obtained by 4.74 dB, 1.96 dB and 6.62 dB, respectively, when using each of the 3 reference signals. Also, the overall SPL was reduced by 7.12 dB when using the multi-reference controller and by 7.66 dB when using the proposed controller. Conclusively, under the multiple source contribution, a single-channel feed forward controller with the reference signal from a weighted sum of the source signals works well with lower cost than multi-channel feedforward controller.


Sign in / Sign up

Export Citation Format

Share Document