Local Modal Space Control Design for a 6-DOF Parallel Manipulator

2014 ◽  
Vol 681 ◽  
pp. 90-95
Author(s):  
Ti Xian Tian ◽  
Hong Zhou Jiang ◽  
Jing Feng He ◽  
Zhi Zhong Tong

A novel design method for modal space controller with dynamic pressure feedback is proposed for hydraulically-driven Stewart platforms. By exploiting properties of the joint-space inverse mass matrix, an analytic modal matrix is derived which can be used for transforming the highly coupled multiple-input multiple-output (MIMO) dynamics into six independent single-input single-output (SISO) channels in modal space. Based on classical control method, the modal space controller with dynamic pressure feedback is implemented and used to broaden the bandwidth of each channel in modal space separately. The effectiveness of the proposed method is examined through experiment.

2010 ◽  
Vol 459 ◽  
pp. 221-233 ◽  
Author(s):  
Kou Yamada ◽  
Nghia Thi Mai ◽  
Yoshinori Ando ◽  
Takaaki Hagiwara ◽  
Iwanori Murakami ◽  
...  

The modified Smith predictor is well known as an effective time-delay compensator for a plant with large time-delays, and several papers on the modified Smith predictor have been published. The parameterization of all stabilizing modified Smith predictors for single-input/single-output time-delay plants is obtained by Yamada et al. However, they do not examine the parameterization of all stabilizing modified Smith predictors for multiple-input/multiple-output time-delay plants. The purpose of this paper is to expand the result by Yamada et al. and to propose the parameterization of all stabilizing modified Smith predictors for multiple-input/multiple-output time-delay plants. Control characteristics of the control system using obtained parameterization of all stabilizing modified Smith predictors are also given. Finally, a numerical example is illustrated to show the effectiveness of proposed parameterization of all stabilizing modified Smith predictors.


2007 ◽  
Vol 4 (2) ◽  
pp. 318-329
Author(s):  
Baghdad Science Journal

This paper presents a newly developed method with new algorithms to find the numerical solution of nth-order state-space equations (SSE) of linear continuous-time control system by using block method. The algorithms have been written in Matlab language. The state-space equation is the modern representation to the analysis of continuous-time system. It was treated numerically to the single-input-single-output (SISO) systems as well as multiple-input-multiple-output (MIMO) systems by using fourth-order-six-steps block method. We show that it is possible to find the output values of the state-space method using block method. Comparison between the numerical and exact results has been given for some numerical examples for solving different types of state-space equations using block method for conciliated the accuracy of the results of this method.


2021 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda ◽  
Linh Nguyen

<div>Identification of static nonlinear elements (i.e., nonlinear elements whose outputs depend only on the present value of inputs) is crucial for the success of system identification tasks. Identification of static nonlinear elements though can pose several challenges. Two of the main challenges are: (1) mathematical models describing the elements being unknown and thus requiring black-box identification; and (2) collection of sufficiently informative measurements. With the aim of addressing the two challenges, we propose in this paper a method of predetermining informative measurement points offline (i.e., prior to conducting experiments or seeing any measured data), and using those measurements for online model calibration. Since we deal with an unknown model structure scenario, a high order polynomial model is assumed. Over fit and under fit avoidance are achieved via checking model convergence via an iterative means. Model dependent information maximization is done via a D-optimal design of experiments strategy. Due to experiments being designed offline and being designed prior to conducting measurements, this method eases off the computation burden at the point of conducting measurements. The need for in-the-loop information maximization while conducting measurements is avoided. We conclude by comparing the proposed D-optimal design method with a method of in-the-loop information maximization and point out the pros and cons. The method is demonstrated for the single-input-single-output (SISO) static nonlinear element case. The method can be extended to MISO systems as well.</div>


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zedong Xie ◽  
Xihong Chen ◽  
Xiaopeng Liu ◽  
Yu Zhao

The impact of intersymbol interference (ISI) on single-carrier frequency-domain equalization with multiple input multiple output (MIMO-SC-FDE) troposcatter communication systems is severe. Most of the channel equalization methods fail to solve it completely. In this paper, given the disadvantages of the noise-predictive (NP) MMSE-based and the residual intersymbol interference cancellation (RISIC) equalization in the single input single output (SISO) system, we focus on the combination of both equalization schemes mentioned above. After extending both of them into MIMO system for the first time, we introduce a novel MMSE-NP-RISIC equalization method for MIMO-SC-FDE troposcatter communication systems. Analysis and simulation results validate the performance of the proposed method in time-varying frequency-selective troposcatter channel at an acceptable computational complexity cost.


2020 ◽  
Vol 10 (21) ◽  
pp. 7492
Author(s):  
Daniel Fernandes ◽  
Francisco Cercas ◽  
Rui Dinis ◽  
Pedro Sebastião

The demand for ubiquitous telecommunications services forces operators to have a special concern about signal quality and the coverage area they offer to their customers. This was usually checked by using suitable propagation models for Single Input Single Output (SISO) systems, which are no longer the case for new and future mobile generations, such as 5G and beyond. To guarantee good signal quality coverage, operators started to replace these models with Multiple Input Multiple Output (MIMO) ones. To achieve the best results, these models are usually calibrated with Drive Test (DT) measures; however, the DTs available for MIMO propagation models are sparse, in contrast to SISO ones. The main contribution presented in this paper is a methodology to extend the propagation models of SISO systems so they can be applied in MIMO sytems with Single-Carrier and Frequency-Domain Equalization (SC-FDE), while still using DTs acquired for SISO systems. This paper presents the impact on Bit Error Rate (BER) performance and its coverage area resulting from the application of our proposed method. We consider a MIMO SC-FDE system with an Iterative Block Decision Feedback Equalization (IB-DFE) receiver and we present the improvement expressions for the BER that we illustrate with some simulations.


1994 ◽  
Vol 116 (2) ◽  
pp. 169-177 ◽  
Author(s):  
D. F. Thompson ◽  
O. D. I. Nwokah

Quantitative Feedback Theory (QFT), a robust control design method introduced by Horowitz, has been shown to be useful in many cases of multi-input, multi-output (MIMO) parametrically uncertain systems. Prominent is the capability for direct design to closed-loop frequency response specifications. In this paper, the theory and development of optimization-based algorithms for design of minimum-gain controllers is presented, including an illustrative example. Since MIMO QFT design is reduced to a series of equivalent single-input, single-output (SISO) designs, the emphasis is on the SISO case.


1993 ◽  
Author(s):  
S. Jagannathan ◽  
A. B. Palazzolo ◽  
A. F. Kascak ◽  
G. T. Montague

A novel frequency-domain technique, having its roots in Quantitative Feedback Theory (QFT), has been developed to design controllers for active vibration control (AVC). The advantages are a plant-based design according to performance specifications, and the ability to include structured uncertainties in the critical plant parameters like passive bearing stiffness or damping. In this paper, we describe the background theory of single-input, single-output (SISO) and multi-input, multi-output (MIMO) QFT design, followed by development of the theory adapted for AVC. Application examples are considered next, outlining the design method for both cases. Simulation results for the systems studied are presented showing the effectiveness of the technique in attenuating vibration.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1371 ◽  
Author(s):  
Ha Le Nhu Ngoc Thanh ◽  
Mai The Vu ◽  
Nguyen Xuan Mung ◽  
Ngoc Phi Nguyen ◽  
Nguyen Thanh Phuong

This paper presents a lumped perturbation observer-based robust control method using an extended multiple sliding surface for a system with matched and unmatched uncertainties. The fundamental methodology is to apply the multiple surfaces to approximate the unknown lumped perturbations simultaneously influencing on a nonlinear single input–single output (SISO) system. Subsequently, a robust controller, based on the proposed multi-surface and the approximated values, is designed to highly improve the control performance of the system. A general stability of the lumped perturbation observer and closed-loop control system is obtained through the Lyapunov theory. Results of a numerical simulation of an illustrative example demonstrate the soundness of the proposed algorithm.


2021 ◽  
Author(s):  
Qiandiao Wei ◽  
He Xu ◽  
Siqing Chen ◽  
Weiwang Fan

Abstract Soft robots driven by pressurized fluid have recently been attracted more attention and achieved a variety of innovative applications in bionics, medical surgery, rehabilitation, search, and rescue system. And they have been demonstrated to be able to perform many different tasks, especially in some conditions of demand a high degree of compliance. Generally, they consisted of multiple actuate channels that require independent works. Consequently, a mass of pressure regulators and input pipelines are demanded, which will increase the complexity of the control system. To solve this problem, we propose a new pressure control method inspired by the control bus of electronic interface technology in this paper. An addressable pressure control bus system based on band-pass valve (BPV) and square wave of pressure (control signal) was designed. It consisted of a pressure supply source and an addressing signal, they are controled by two regulators, respectively. One of the pressure pipelines serves as the control bus to transmit the control pressure signal, which plays an addressing signal role in the system. The other serves as the pressure supply source of the multi-channel actuators. The BPV can be set to different opening pressure bands to realize the setting of diverse outputs address codes on the bus. This method discovered the work mode of double-input multi-output, which will get rids of the traditional control method of single-input single-output. In this paper, we designed the BPV and tested its function. To demonstrate the feasibility of this method proposed, a control system with two output ports was established. The result has shown that the output port can be selected by the pressure square wave signal, which realizes the function of single input multiple outputs. It reduces the complexity of the control strategy of the fluid control system.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
R. Carrasco-Alvarez ◽  
R. Carreón-Villal ◽  
J. Vázquez Castillo ◽  
J. Ortegón Aguilar ◽  
O. Longoria-Gandara ◽  
...  

A methodology for implementing a triply selective multiple-input multiple-output (MIMO) simulator based on graphics processing units (GPUs) is presented. The resulting simulator is based on the implementation of multiple double-selective single-input single-output (SISO) channel generators, where the multiple inputs and the multiple received signals have been transformed in order to supply the corresponding space correlation of the channel under consideration. A direct consequence of this approach is the flexibility provided, which allows different propagation statistics to each SISO channel to be specified and thus more complex environments to be replicated. It is shown that under some specific constraints, the statistics of the triply selective MIMO simulator are the same as those reported in the state of art. Simulation results show the computational time improvement achieved, up to 650-fold for an 8 × 8 MIMO channel simulator when compared with sequential implementations. In addition to the computational improvement, the proposed simulator offers flexibility for testing a variety of scenarios in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) systems.


Sign in / Sign up

Export Citation Format

Share Document