scholarly journals Improvement in EMI Shielding Properties of Silicone Rubber/POE Blends Containing ILs Modified with Carbon Black and MWCNTs

2019 ◽  
Vol 9 (9) ◽  
pp. 1774 ◽  
Author(s):  
Chao Liu ◽  
Chuyang Yu ◽  
Guolong Sang ◽  
Pei Xu ◽  
Yunsheng Ding

Silicone rubber (SR)/polyolefin elastomer (POE) blends containing ionic liquids modified with carbon blacks (CB-IL) and multi-walled carbon nanotubes (CNT-IL) were prepared by melt-blending and hot pressing. SR/POE/CB-IL and SR/POE/CB-CNT-IL composites showed co-continuous structural morphologies. The cation–π interactions between ILs and CNTs were stronger than those between ILs and CBs due to the large length and high surface area of CNTs, which promoted better dispersion of carbon fillers. SR/POE/CB-CNT-IL composites showed higher EMI SE than SR/POE/CB-IL composites containing identical filler contents because the CNTs with larger aspect ratios helped form more electrically-conductive networks.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3451
Author(s):  
Yuanjie Xiong ◽  
Yuan Wang ◽  
Housheng Jiang ◽  
Shaojun Yuan

Designing of porous carbon system for CO2 uptake has attracted a plenty of interest due to the ever-increasing concerns about climate change and global warming. Herein, a novel N rich porous carbon is prepared by in-situ chemical oxidation polyaniline (PANI) on a surface of multi-walled carbon nanotubes (MWCNTs), and then activated with KOH. The porosity of such carbon materials can be tuned by rational introduction of MWCNTs, adjusting the amount of KOH, and controlling the pyrolysis temperature. The obtained M/P-0.1-600-2 adsorbent possesses a high surface area of 1017 m2 g−1 and a high N content of 3.11 at%. Such M/P-0.1-600-2 adsorbent delivers an enhanced CO2 capture capability of 2.63 mmol g−1 at 298.15 K and five bars, which is 14 times higher than that of pristine MWCNTs (0.18 mmol g−1). In addition, such M/P-0.1-600-2 adsorbent performs with a good stability, with almost no decay in a successive five adsorption-desorption cycles.


2021 ◽  
Author(s):  
Bruno Freitas ◽  
Willian G. Nunes ◽  
Davi Marcelo Soares ◽  
Fernando C. Rufino ◽  
Cássio Murilo Moreira ◽  
...  

This novel carbon–carbon composite electrode has superlative electrochemical properties with flexibility, mechanical robustness, and weldability.


2019 ◽  
Vol 2 (01) ◽  
pp. 43-48 ◽  
Author(s):  
Ehsan Zolfonoun

A solid-phase extraction method based on multi-walled carbon nanotubes (MWCNTs) was applied for the preconcentration of L-tryptophan prior to its spectrofluorometric determination. Due to the high surface area of MWCNTs, satisfactory concentration factor and extraction recovery can be achieved with only 10 mg MWCNTs in 5 min. The effects of pH, sorbent amount, eluent type and time on the recovery of the analyte were investigated. Under the optimum conditions, the detection limit for L-tryptophan was 8.9 ng mL−1. The precision of the method, evaluated as the relative standard deviation obtained by analyzing of 10 replicates, was 2.6%. The practical applicability of the developed method was examined using wheat and barley samples.


2013 ◽  
Vol 13 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Sharmila Pradhan ◽  
Ralf Lach ◽  
Wolfgang Grellmann ◽  
Rameshwar Adhikari

The effect of different types of fillers on morphology and mechanical properties of polymer nanocomposites has been investigated using ethylene-1–octene copolymer (EOC), a polyolefin based elastomer, as matrix and various nanofillers {such as multi-walled carbon nanotubes (MWCNT), layered silicate (LS) and boehmite (OS2)}. The morphological structures were studied by scanning electron microscopy (SEM) while the mechanical properties were characterized by tensile testing and microindentation hardness measurements. It has been shown that the nature of the nanofiller may have significant influence on the mechanical properties of the samples. Among the nanocomposites studied so far, the MWCNT filled samples showed the highest reinforcing effect followed by layered silicate. The least reinforcing effect was obtained for the samples filled with boehmite nanoparticles. Nepal Journal of Science and Technology Vol. 13, No. 2 (2012) 103-108 DOI: http://dx.doi.org/10.3126/njst.v13i2.7721


2000 ◽  
Vol 123 (1) ◽  
pp. 12-19 ◽  
Author(s):  
X. Cheng ◽  
A. M. Sastry ◽  
B. E. Layton

Some fundamental issues concerning the design and performance of stochastic porous structures are examined, stemming from application of advanced fibrous electrode substrates in NiMH automotive cells. These electrodes must resist corrosion and local failures under hundreds of charge/discharge cycles. Such fibrous materials can be effectively used as substrates for chemical reactions because of their combinations of high surface area and high conductivity. Key questions concerning the relationships among connectivity and conductivity, scale and variability in material response are addressed. Two techniques are developed and compared for use in predicting these materials’ conductivity. The first approach uses a statistical technique in conjunction with an adaptation of classic micromechanical models. The second approach uses the statistical generation technique, followed by an exact calculation of 2D network conductivity. The two techniques are compared with one another and with classic results. Several important conclusions about the design of these materials are presented, including the importance of use of fibers with aspect ratios greater than at least 50, the weak effect of moderate alignment for unidirectional conductivity, and the weak power-law behavior of conductivity versus volume fraction over the range of possible behaviors.


Author(s):  
Hemalatha K.P. ◽  

Nanomaterials are the foundations of Nanotechnology, which are measured in nanoscales, Carbon nanotubes are one of the interesting nanomaterials, studied for over 25 years because of their superlative properties such as high surface area, electrical and thermal conductivity, high biocompatibility, flexibility, resistance to corrosion and nanosize. According to research, carbon nanotubes are applied in sensing, water treatment, and drug delivery, mainly used to deliver the anticancer drugs. In our work, functionalization of multi walled carbon nanotubes done by covalent and non-covalent functionation methods, covalent functionalization showed better dispersing efficiency in aqueous medium and compatible with biological systems with damaging the crystal lattice of carbon nanotubes. Non covalent functionalization helps to derivatized with active compounds, surface adsorption or attachment of various molecules or antibodies, which subsequently helps in targeting the site and to produce therapeutic effects. Different formulations prepared by functionalized MWCNTs and multiple functionalization of MWCNTs done by binding the drug and antibodies to prepare functionalized MWCNTs 5-Fluorouracil complexes. The Cytotoxicity assay was carried out for the obtained new targeting formulations to analyze the effect of all the formulations on HCT116 cell line. The percentage death was determined based on the viability of the cells in the appropriate vehicle controls. In this study, we report the successful functionalization, binding of 5 Fluorouracil, antibodies to MWCNTs, and cells viability of all prepared formulations for the development of novel carbon based anticancer drug delivery system. Functionalized MWCNTs-5-Fluorouracil antibodies composite at concentration above 2.5 µg/mL exhibited ≥ 50% cytotoxicity post normalization with compound control to negate precipitation observed with the compound. All the formulations showed the precipitations indicating antitumor activity and biocompatibility.


Author(s):  
V. S. Yagubov ◽  
A. V. Shchegolkov

The review of modern approaches to the development of electric heating materials makes it possible to conclude that the studies of electrically conductive composites are based on using elastomers modified with nanoscale carbon materials. In the manufacturing of electric heaters, temperature self-regulation is the main property that increases their characteristics. However, researchers engaged in studying such heaters, face difficulties associated with the magnitude of supply voltage and power. In this regard, the tasks of the present work were as follows: to study the modifier characteristics for nanomodified heaters, and to select a modifier that is best dispersed in the elastomer, which will ensure the maximum magnitude of the supply voltage and the high value of the specific power of the heater. To develop an electric heater, silicone rubber modified with carbon nanotubes was used as an elastomer. The method for manufacturing the heating element nanomodified material was described. Multi-walled carbon nanotubes synthesized through the CVD method were employed as an electrically conductive modifier. Before modifying the elastomer, the carbon nanotubes were processed in a mill at a rotational speed of working blades of 25,000 rpm. Then, the nanotubes were thermally treated in a furnace until the temperature of 110 °C was reached. After that, the nanotubes and the elastomer were mixed using a BRABENDER mixer, followed by pressing and obtaining plates of the electric heating material. To ensure contact between the heater and the power source, aluminum foil, inserted into the punches before pressing, was used. The electrical conductivity of the elastic heater nanomodified material was studied using a setup (facility) constructed especially for that purpose. Based on the results obtained, a conclusion can be made on the expediency of using different multi-walled carbon nanotubes as elastomer modifiers, which form electrically conductive networks inside the elastomer and are capable of releasing heat when connected to an electrical voltage source. Employing a non-contact method of measuring the temperature field on the electric heater surface, thermograms were recorded. It was found that the temperature field is uniformly distributed on the heater surface and is stabilized at a certain time after achieving a thermal balance with the environment. From the data obtained, it can be concluded that the heating element connected to an alternating current network with a voltage of 220 V is efficient.


Sign in / Sign up

Export Citation Format

Share Document