scholarly journals AR Pointer: Advanced Ray-Casting Interface Using Laser Pointer Metaphor for Object Manipulation in 3D Augmented Reality Environment

2019 ◽  
Vol 9 (15) ◽  
pp. 3078 ◽  
Author(s):  
Hyocheol Ro ◽  
Jung-Hyun Byun ◽  
Yoon Jung Park ◽  
Nam Kyu Lee ◽  
Tack-Don Han

In this paper, we propose AR Pointer, a new augmented reality (AR) interface that allows users to manipulate three-dimensional (3D) virtual objects in AR environment. AR Pointer uses a built-in 6-degrees of freedom (DoF) inertial measurement unit (IMU) sensor in an off-the-shelf mobile device to cast a virtual ray that is used to accurately select objects. It is also implemented using simple touch gestures commonly used in smartphones for 3D object manipulation, so users can easily manipulate 3D virtual objects using the AR Pointer, without a long training period. To demonstrate the usefulness of AR Pointer, we introduce two use-cases, constructing an AR furniture layout and AR education. Then, we conducted two experiments, performance tests and usability tests, to represent the excellence of the designed interaction methods using AR Pointer. We found that AR Pointer is more efficient than other interfaces, achieving 39.4% faster task completion time in the object manipulation. In addition, the participants gave an average of 8.61 points (13.4%) on the AR Pointer in the usability test conducted through the system usability scale (SUS) questionnaires and 8.51 points (15.1%) on the AR Pointer in the fatigue test conducted through the NASA task load index (NASA-TLX) questionnaire. Previous AR applications have been implemented in a passive AR environment where users simply check and pop up the AR objects those are prepared in advance. However, if AR Pointer is used for AR object manipulation, it is possible to provide an immersive AR environment for the user who want/wish to actively interact with the AR objects.

2019 ◽  
Vol 9 (14) ◽  
pp. 2933 ◽  
Author(s):  
Ju Young Oh ◽  
Ji Hyung Park ◽  
Jung-Min Park

This paper proposes an interaction method to conveniently manipulate a virtual object by combining touch interaction and head movements for a head-mounted display (HMD), which provides mobile augmented reality (AR). A user can conveniently manipulate a virtual object with touch interaction recognized from the inertial measurement unit (IMU) attached to the index finger’s nail and head movements tracked by the IMU embedded in the HMD. We design two interactions that combine touch and head movements, to manipulate a virtual object on a mobile HMD. Each designed interaction method manipulates virtual objects by controlling ray casting and adjusting widgets. To evaluate the usability of the designed interaction methods, a user evaluation is performed in comparison with the hand interaction using Hololens. As a result, the designed interaction method receives positive feedback that virtual objects can be manipulated easily in a mobile AR environment.


Author(s):  
Putu Anggara Mahardika ◽  
I Made Arsa Suyadnya ◽  
Komang Oka Saputra

Markerless Augmented Reality (AR) is a technology that combines two-dimensional or three-dimensional virtual objects into a real environment and then projects these virtual objects in real time without the need for a special marker. In this research, the Markerless AR application will be used to simulate room decoration with 3-dimensional objects. This research was built using the Java programming language and using supporting applications namely Android Studio and Wikitude library. Based on the results of testing with the Black-box method, the overall functionality of the application has run well, besides testing also uses the System Usability Scale (SUS) method by giving questionnaires to 20 application users. The results of the System Usability Scale (SUS) test obtained an average score of 73.13. In grouping the SUS percentile score, the value of 73.13 is in Class C, wherein this assessment the application is acceptable and can be used easily by the user.


Author(s):  
Muhammad Luthfi Hamzah ◽  
Ambiyar Ambiyar ◽  
Fahmi Rizal ◽  
Wakhinudin Simatupang ◽  
Dedy Irfan ◽  
...  

<span lang="EN-US">Applied augmented reality works by detecting imageries or pictures, normally called markers, by using smartphone camera that detects these preplaced markers. Augmented reality has seen wide application in various fields, one of them is education. In the field of education, augmented reality is utilized to make learning process more engaging and attractive. Starting from the problem that learning computer networks on introduce to network device which is currently still delivered conventionally. So, this research makes a solution to this problem by developing learning media using augmented reality (AR) technology, which is a technology that combines two-dimensional or three-dimensional virtual objects into a real environment and then projects these virtual objects in real time. The purpose of this research is to build AR-based applications in learning computer network devices in order to increase understanding, generate motivation and student interest. The methodology used in this research consist of Envisioning Phase(Problem Identification, Planning Phase(Planning), Developing Phase(Design), Stabilizing Phase(Testing), Deploying Phase(Implementation). This study uses 31 students as sample and the data was analyzed using the SUS(System Usability Scale). The result show </span><span lang="EN-US">evaluates the usability using SUS of 31 respondents and it can be concluded that this AR application can be accepted by these students in its use with </span><span lang="EN-US">SUS Score obtained was 78.5</span>


Repositor ◽  
2020 ◽  
Vol 2 (5) ◽  
pp. 553
Author(s):  
Tirto Adhi Triambodo ◽  
Ali Sofyan Kholimi ◽  
Lailatul Husniah

AbstrakTaman Rekreasi Sengkaling memiliki luas keseluruhan  9 hektar yang terdiri dari 6 hektar  diantaranya ada taman dan pepohonan hijau. Mengingat luasnya Taman Rekreasi Sengkaling, disana tidak ada peta dan tempat lokasi pusat informasi wahana berada di pintu masuk yang tentu akan membuat pengunjung bingung ketika sudah berada didalam Taman Rekreasi Sengkaling ingin mengetahui informasi wahana dan membutuhkan waktu lama dalam mencapai tujuan wahana yang diinginkan. Berdasarkan dari permasalahan yang ada, maka dibutuhkan suatu aplikasi yang bisa memberikan informasi dan navigasi sehingga pengunjung dapat dengan mudah mengetahui informasi wahana dan navigasi menuju lokasi wahana. Augmented Reality adalah teknologi yang menggabungkan benda maya dua dimensi dan ataupun tiga dimensi ke dalam lingkungan nyata tiga dimensi. Teknologi Augmented Reality ini digunakan untuk pembuatan aplikasi untuk informasi dan navigasi pada Taman Rekreasi Sengkaling. Pada pengujian sistem berdasarkan hasil kuesioner dengan 5 pertanyaan kepada 30 responden untuk memakai aplikasi AR Taman Rekreasi Sengkaling. Dari pengujian sistem aplikasi AR kepada user yang memilih setuju dengan presentase 91%. Maka hasil yang didapatkan, penggunaan aplikasi Augmented Reality direspon baik oleh pengunjung Taman Rekreasi Sengkaling.Abstract  Sengkaling Recreation Park has a total area of 9 hectares consisting of 6 hectares of which there are parks and green trees. Given the breadth of the Sengkaling Recreation Park, there is no map and location of the information center where the vehicle is located at the entrance which would make visitors confused when already in the Sengkaling Recreation Park wants to know vehicle information and takes a long time to reach the desired destination. Based on the existing problems, it requires an application that can provide information and navigation so that visitors can easily find information on vehicle and navigation to the location of the vehicle. Augmented Reality is a technology that combines two-dimensional and / or three-dimensional virtual objects into a real three-dimensional environment. This Augmented Reality technology is used for making applications for information and navigation in Sengkaling Recreation Park. On testing the system based on the results of the questionnaire with 5 questions to 30 respondents to use the AR Sengkaling Recreational Park application. From testing the AR application system to users who choose to agree with a percentage of 91%. Then the results obtained, the use of Augmented Reality applications responded well by visitors to the Sengkaling Recreation Park.


2015 ◽  
Vol 75 (4) ◽  
Author(s):  
Ajune Wanis Ismail ◽  
Mark Bilinghust ◽  
Mohd Shahrizal Sunar

In this paper, we describe a new tracking approach for object handling in Augmented Reality (AR). Our approach improves the standard vision-based tracking system during marker extraction and its detection stage. It transforms a unique tracking pattern into set of vertices which are able to perform interaction such as translate, rotate, and copy. This is based on arobust real-time computer vision algorithm that tracks a paddle that a person uses for input. A paddle pose pattern is constructed in a one-time calibration process and through vertex-based calculation of the camera pose relative to the paddle we can show 3D graphics on top of it. This allows the user to look at virtual objects from different viewing angles in the AR interface and perform 3D object manipulation. This approach was implemented using marker-based tracking to improve the tracking in term of the accuracy and robustness in manipulating 3D objects in real-time. We demonstrate our improved tracking system with a sample Tangible AR application, and describe how the system could be improved in the future.


SISFOTENIKA ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 152
Author(s):  
Joe Yuan Mambu ◽  
Andria Kusuma Wahyudi ◽  
Brily Latusuay ◽  
Devi Elwanda Supit

<p>In learning projectile motion and its velocity, students tend to look up a plain two-dimensional image in a science book. While there’s some educational props, yet they usually a very tradional ones and can not be used for real calculation. The utilization of Augmented Reality (AR) in educational method may raise curiosity and gives a unique way in learning projectile motion as the motion can be seen in a three dimensional. Augmented Reality itself is a combination of real world and virtual objects. This application uses the Vuforia SDK that able to blend the real world and virtual objects. Through this application, we were able to simulate projectile motion and its velocity in more realistic way, have slightly interaction with the reality, and gets input from user so they can learn and see the result of the parameter that they entered. Thus, with the advantage of AR the application gives a more realistic feel compared to the existing ones available in public as it could receive any input and show the output in AR. </p>


Author(s):  
Anang Pramono ◽  
Martin Dwiky Setiawan

The concept of education for children is important. The aspects that must be considered are methods and learning media. In this research innovative and alternative learning media are made to understand fruits for children with Augmented Reality (AR). Augmented Reality (AR) in principle is a technology that is able to combine two-dimensional or three-dimensional virtual objects into a real environment and then project it. This learning media combines picture cards and virtual reality. Markers contained on picture cards will be captured by the mobile device camera, processed and will 3D animated pieces appear on the mobile screen in realtime. By using the concept of combining real world, real images on cards and virtual, applications can stimulate imagination and sense of desire in children and motivation to learn more and more. 3D fruit estimation created using the 3D Blender application and the Augmented Rea process lity is made using Unity and the Vuforia SDK library. The application of fruit recognition has been applied to several child respondents and has been tested on several types and brands of Android-based mobile phones. Based on research trials, 86% of 30 respondents stated that the application which was developed very effectively as a medium for the introduction of fruits.


2020 ◽  
Vol 2 (1) ◽  
pp. 39-53
Author(s):  
Yolinda Suciliyana ◽  
La Ode Abdul Rahman

Technology in the multimedia field that is currently developing is Augmented Reality (AR). Utilization of Augmented Reality as a medium for children's education provides a new perspective on the existing educational media, not only using real objects but also using virtual objects in the delivery of information. AR is a technology that combines three-dimensional virtual objects into a real three-dimensional environment and displays them in real time. AR can make delivery easier and make information more interesting especially for children. AR is expected to be able to support as one of the media for school-age children in an effort to realize health promotion. This research method uses a literature review that focuses on the use of Augmented Reality as a medium for health education for school-age children. The literature used is in the form of articles originating from national and international journals. The application of AR as an educational medium can increase children's knowledge. In Indonesia the use of AR media has not been implemented much less especially in nursing. The need for the development of this AR media in the world of nursing.


2021 ◽  
Vol 21 (1) ◽  
pp. 15-29
Author(s):  
Lidiane Pereira ◽  
Wellingston C. Roberti Junior ◽  
Rodrigo L. S. Silva

In Augmented Reality systems, virtual objects are combined with real objects, both three dimensional, interactively and at run-time. In an ideal scenario, the user has the feeling that real and virtual objects coexist in the same space and is unable to differentiate the types of objects from each other. To achieve this goal, research on rendering techniques have been conducted in recent years. In this paper, we present a Systematic Literature Review aiming to identify the main characteristics concerning photorealism in Mixed and Augmented Reality systems to find research opportunities that can be further exploited or optimized. The objective is to verify if exists a definition of photorealism in Mixed and Augmented Reality. We present a theoreticalfundamental over the most used methods concerning realism in Computer Graphics. Also, we want to identify the most used methods and tools to enable photorealism in Mixed and Augmented Reality systems.


2020 ◽  
Vol 3 (6) ◽  
Author(s):  
Yongzhe Zhang ◽  
Jiachen Zheng

This paper adopts IMU motion recognition technology based on mechanical learning. IMU, inertial measurement unit, is a device that uses accelerometer and gyroscope to measure the three-axis attitude Angle (or angular velocity) and acceleration of an object. In a narrow sense, an IMU is equipped with gyroscope and accelerometer on three orthogonal axes, with a total of 6 degrees of freedom, to measure the angular velocity and acceleration of an object in three-dimensional space, which is known as "6-axis IMU". Broadly speaking, the IMU can add magnetometer to accelerometer and gyroscope to form the "9-axis IMU" which is now known to the public.


Sign in / Sign up

Export Citation Format

Share Document