scholarly journals An Enhanced Feature Pyramid Object Detection Network for Autonomous Driving

2019 ◽  
Vol 9 (20) ◽  
pp. 4363 ◽  
Author(s):  
Yutian Wu ◽  
Shuming Tang ◽  
Shuwei Zhang ◽  
Harutoshi Ogai

Feature Pyramid Network (FPN) builds a high-level semantic feature pyramid and detects objects of different scales in corresponding pyramid levels. Usually, features within the same pyramid levels have the same weight for subsequent object detection, which ignores the feature requirements of different scale objects. As we know, for most detection networks, it is hard to detect small objects and occluded objects because there is little information to exploit. To solve the above problems, we propose an Enhanced Feature Pyramid Object Detection Network (EFPN), which innovatively constructs an enhanced feature extraction subnet and adaptive parallel detection subnet. Enhanced feature extraction subnet introduces Feature Weight Module (FWM) to enhance pyramid features by weighting the fusion feature map. Adaptive parallel detection subnet introduces Adaptive Context Expansion (ACE) and Parallel Detection Branch (PDB). ACE aims to generate the features of adaptively enlarged object context region and original region. PDB predicts classification and regression results separately with the two features. Experiments showed that EFPN outperforms FPN in detection accuracy on Pascal VOC and KITTI datasets. Furthermore, the performance of EFPN meets the real-time requirements of autonomous driving systems.

2021 ◽  
Vol 11 (24) ◽  
pp. 11630
Author(s):  
Yan Zhou ◽  
Sijie Wen ◽  
Dongli Wang ◽  
Jinzhen Mu ◽  
Irampaye Richard

Object detection is one of the key algorithms in automatic driving systems. Aiming at addressing the problem of false detection and the missed detection of both small and occluded objects in automatic driving scenarios, an improved Faster-RCNN object detection algorithm is proposed. First, deformable convolution and a spatial attention mechanism are used to improve the ResNet-50 backbone network to enhance the feature extraction of small objects; then, an improved feature pyramid structure is introduced to reduce the loss of features in the fusion process. Three cascade detectors are introduced to solve the problem of IOU (Intersection-Over-Union) threshold mismatch, and side-aware boundary localization is applied for frame regression. Finally, Soft-NMS (Soft Non-maximum Suppression) is used to remove bounding boxes to obtain the best results. The experimental results show that the improved Faster-RCNN can better detect small objects and occluded objects, and its accuracy is 7.7% and 4.1% respectively higher than that of the baseline in the eight categories selected from the COCO2017 and BDD100k data sets.


2021 ◽  
Vol 10 (3) ◽  
pp. 168
Author(s):  
Peng Liu ◽  
Yongming Wei ◽  
Qinjun Wang ◽  
Jingjing Xie ◽  
Yu Chen ◽  
...  

Landslides are the most common and destructive secondary geological hazards caused by earthquakes. It is difficult to extract landslides automatically based on remote sensing data, which is import for the scenario of disaster emergency rescue. The literature review showed that the current landslides extraction methods mostly depend on expert interpretation which was low automation and thus was unable to provide sufficient information for earthquake rescue in time. To solve the above problem, an end-to-end improved Mask R-CNN model was proposed. The main innovations of this paper were (1) replacing the feature extraction layer with an effective ResNeXt module to extract the landslides. (2) Increasing the bottom-up channel in the feature pyramid network to make full use of low-level positioning and high-level semantic information. (3) Adding edge losses to the loss function to improve the accuracy of the landslide boundary detection accuracy. At the end of this paper, Jiuzhaigou County, Sichuan Province, was used as the study area to evaluate the new model. Results showed that the new method had a precision of 95.8%, a recall of 93.1%, and an overall accuracy (OA) of 94.7%. Compared with the traditional Mask R-CNN model, they have been significantly improved by 13.9%, 13.4%, and 9.9%, respectively. It was proved that the new method was effective in the landslides automatic extraction.


2021 ◽  
Vol 11 (8) ◽  
pp. 3531
Author(s):  
Hesham M. Eraqi ◽  
Karim Soliman ◽  
Dalia Said ◽  
Omar R. Elezaby ◽  
Mohamed N. Moustafa ◽  
...  

Extensive research efforts have been devoted to identify and improve roadway features that impact safety. Maintaining roadway safety features relies on costly manual operations of regular road surveying and data analysis. This paper introduces an automatic roadway safety features detection approach, which harnesses the potential of artificial intelligence (AI) computer vision to make the process more efficient and less costly. Given a front-facing camera and a global positioning system (GPS) sensor, the proposed system automatically evaluates ten roadway safety features. The system is composed of an oriented (or rotated) object detection model, which solves an orientation encoding discontinuity problem to improve detection accuracy, and a rule-based roadway safety evaluation module. To train and validate the proposed model, a fully-annotated dataset for roadway safety features extraction was collected covering 473 km of roads. The proposed method baseline results are found encouraging when compared to the state-of-the-art models. Different oriented object detection strategies are presented and discussed, and the developed model resulted in improving the mean average precision (mAP) by 16.9% when compared with the literature. The roadway safety feature average prediction accuracy is 84.39% and ranges between 91.11% and 63.12%. The introduced model can pervasively enable/disable autonomous driving (AD) based on safety features of the road; and empower connected vehicles (CV) to send and receive estimated safety features, alerting drivers about black spots or relatively less-safe segments or roads.


2021 ◽  
Vol 11 (13) ◽  
pp. 6016
Author(s):  
Jinsoo Kim ◽  
Jeongho Cho

For autonomous vehicles, it is critical to be aware of the driving environment to avoid collisions and drive safely. The recent evolution of convolutional neural networks has contributed significantly to accelerating the development of object detection techniques that enable autonomous vehicles to handle rapid changes in various driving environments. However, collisions in an autonomous driving environment can still occur due to undetected obstacles and various perception problems, particularly occlusion. Thus, we propose a robust object detection algorithm for environments in which objects are truncated or occluded by employing RGB image and light detection and ranging (LiDAR) bird’s eye view (BEV) representations. This structure combines independent detection results obtained in parallel through “you only look once” networks using an RGB image and a height map converted from the BEV representations of LiDAR’s point cloud data (PCD). The region proposal of an object is determined via non-maximum suppression, which suppresses the bounding boxes of adjacent regions. A performance evaluation of the proposed scheme was performed using the KITTI vision benchmark suite dataset. The results demonstrate the detection accuracy in the case of integration of PCD BEV representations is superior to when only an RGB camera is used. In addition, robustness is improved by significantly enhancing detection accuracy even when the target objects are partially occluded when viewed from the front, which demonstrates that the proposed algorithm outperforms the conventional RGB-based model.


2021 ◽  
Vol 11 (3) ◽  
pp. 968
Author(s):  
Yingchun Sun ◽  
Wang Gao ◽  
Shuguo Pan ◽  
Tao Zhao ◽  
Yahui Peng

Recently, multi-level feature networks have been extensively used in instance segmentation. However, because not all features are beneficial to instance segmentation tasks, the performance of networks cannot be adequately improved by synthesizing multi-level convolutional features indiscriminately. In order to solve the problem, an attention-based feature pyramid module (AFPM) is proposed, which integrates the attention mechanism on the basis of a multi-level feature pyramid network to efficiently and pertinently extract the high-level semantic features and low-level spatial structure features; for instance, segmentation. Firstly, we adopt a convolutional block attention module (CBAM) into feature extraction, and sequentially generate attention maps which focus on instance-related features along the channel and spatial dimensions. Secondly, we build inter-dimensional dependencies through a convolutional triplet attention module (CTAM) in lateral attention connections, which is used to propagate a helpful semantic feature map and filter redundant informative features irrelevant to instance objects. Finally, we construct branches for feature enhancement to strengthen detailed information to boost the entire feature hierarchy of the network. The experimental results on the Cityscapes dataset manifest that the proposed module outperforms other excellent methods under different evaluation metrics and effectively upgrades the performance of the instance segmentation method.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1235
Author(s):  
Yang Yang ◽  
Hongmin Deng

In order to make the classification and regression of single-stage detectors more accurate, an object detection algorithm named Global Context You-Only-Look-Once v3 (GC-YOLOv3) is proposed based on the You-Only-Look-Once (YOLO) in this paper. Firstly, a better cascading model with learnable semantic fusion between a feature extraction network and a feature pyramid network is designed to improve detection accuracy using a global context block. Secondly, the information to be retained is screened by combining three different scaling feature maps together. Finally, a global self-attention mechanism is used to highlight the useful information of feature maps while suppressing irrelevant information. Experiments show that our GC-YOLOv3 reaches a maximum of 55.5 object detection mean Average Precision (mAP)@0.5 on Common Objects in Context (COCO) 2017 test-dev and that the mAP is 5.1% higher than that of the YOLOv3 algorithm on Pascal Visual Object Classes (PASCAL VOC) 2007 test set. Therefore, experiments indicate that the proposed GC-YOLOv3 model exhibits optimal performance on the PASCAL VOC and COCO datasets.


Author(s):  
Seung-Hwan Bae

Region-based object detection infers object regions for one or more categories in an image. Due to the recent advances in deep learning and region proposal methods, object detectors based on convolutional neural networks (CNNs) have been flourishing and provided the promising detection results. However, the detection accuracy is degraded often because of the low discriminability of object CNN features caused by occlusions and inaccurate region proposals. In this paper, we therefore propose a region decomposition and assembly detector (R-DAD) for more accurate object detection.In the proposed R-DAD, we first decompose an object region into multiple small regions. To capture an entire appearance and part details of the object jointly, we extract CNN features within the whole object region and decomposed regions. We then learn the semantic relations between the object and its parts by combining the multi-region features stage by stage with region assembly blocks, and use the combined and high-level semantic features for the object classification and localization. In addition, for more accurate region proposals, we propose a multi-scale proposal layer that can generate object proposals of various scales. We integrate the R-DAD into several feature extractors, and prove the distinct performance improvement on PASCAL07/12 and MSCOCO18 compared to the recent convolutional detectors.


2021 ◽  
Vol 13 (24) ◽  
pp. 5071
Author(s):  
Jing Zhang ◽  
Jiajun Wang ◽  
Da Xu ◽  
Yunsong Li

The use of LiDAR point clouds for accurate three-dimensional perception is crucial for realizing high-level autonomous driving systems. Upon considering the drawbacks of the current point cloud object-detection algorithms, this paper proposes HCNet, an algorithm that combines an attention mechanism with adaptive adjustment, starting from feature fusion and overcoming the sparse and uneven distribution of point clouds. Inspired by the basic idea of an attention mechanism, a feature-fusion structure HC module with height attention and channel attention, weighted in parallel, is proposed to perform feature-fusion on multiple pseudo images. The use of several weighting mechanisms enhances the ability of feature-information expression. Additionally, we designed an adaptively adjusted detection head that also overcomes the sparsity of the point cloud from the perspective of original information fusion. It reduces the interference caused by the uneven distribution of the point cloud from the perspective of adaptive adjustment. The results show that our HCNet has better accuracy than other one-stage-network or even two-stage-network RCNNs under some evaluation detection metrics. Additionally, it has a detection rate of 30FPS. Especially for hard samples, the algorithm in this paper has better detection performance than many existing algorithms.


2020 ◽  
Vol 34 (07) ◽  
pp. 12557-12564 ◽  
Author(s):  
Zhenbo Xu ◽  
Wei Zhang ◽  
Xiaoqing Ye ◽  
Xiao Tan ◽  
Wei Yang ◽  
...  

3D object detection is an essential task in autonomous driving and robotics. Though great progress has been made, challenges remain in estimating 3D pose for distant and occluded objects. In this paper, we present a novel framework named ZoomNet for stereo imagery-based 3D detection. The pipeline of ZoomNet begins with an ordinary 2D object detection model which is used to obtain pairs of left-right bounding boxes. To further exploit the abundant texture cues in rgb images for more accurate disparity estimation, we introduce a conceptually straight-forward module – adaptive zooming, which simultaneously resizes 2D instance bounding boxes to a unified resolution and adjusts the camera intrinsic parameters accordingly. In this way, we are able to estimate higher-quality disparity maps from the resized box images then construct dense point clouds for both nearby and distant objects. Moreover, we introduce to learn part locations as complementary features to improve the resistance against occlusion and put forward the 3D fitting score to better estimate the 3D detection quality. Extensive experiments on the popular KITTI 3D detection dataset indicate ZoomNet surpasses all previous state-of-the-art methods by large margins (improved by 9.4% on APbv (IoU=0.7) over pseudo-LiDAR). Ablation study also demonstrates that our adaptive zooming strategy brings an improvement of over 10% on AP3d (IoU=0.7). In addition, since the official KITTI benchmark lacks fine-grained annotations like pixel-wise part locations, we also present our KFG dataset by augmenting KITTI with detailed instance-wise annotations including pixel-wise part location, pixel-wise disparity, etc.. Both the KFG dataset and our codes will be publicly available at https://github.com/detectRecog/ZoomNet.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3523 ◽  
Author(s):  
Lili Zhang ◽  
Yi Zhang ◽  
Zhen Zhang ◽  
Jie Shen ◽  
Huibin Wang

In this paper, we consider water surface object detection in natural scenes. Generally, background subtraction and image segmentation are the classical object detection methods. The former is highly susceptible to variable scenes, so its accuracy will be greatly reduced when detecting water surface objects due to the changing of the sunlight and waves. The latter is more sensitive to the selection of object features, which will lead to poor generalization as a result, so it cannot be applied widely. Consequently, methods based on deep learning have recently been proposed. The River Chief System has been implemented in China recently, and one of the important requirements is to detect and deal with the water surface floats in a timely fashion. In response to this case, we propose a real-time water surface object detection method in this paper which is based on the Faster R-CNN. The proposed network model includes two modules and integrates low-level features with high-level features to improve detection accuracy. Moreover, we propose to set the different scales and aspect ratios of anchors by analyzing the distribution of object scales in our dataset, so our method has good robustness and high detection accuracy for multi-scale objects in complex natural scenes. We utilized the proposed method to detect the floats on the water surface via a three-day video surveillance stream of the North Canal in Beijing, and validated its performance. The experiments show that the mean average precision (MAP) of the proposed method was 83.7%, and the detection speed was 13 frames per second. Therefore, our method can be applied in complex natural scenes and mostly meets the requirements of accuracy and speed of water surface object detection online.


Sign in / Sign up

Export Citation Format

Share Document