scholarly journals Contactless Monitoring of Microcirculation Reaction on Local Temperature Changes

2019 ◽  
Vol 9 (22) ◽  
pp. 4947 ◽  
Author(s):  
Volynsky ◽  
Margaryants ◽  
Mamontov ◽  
Kamshilin

Assessment of skin blood flow is an important clinical task which is required to study mechanisms of microcirculation regulation including thermoregulation. Contactless assessment of vasomotor reactivity in response to thermal exposure is currently not available. The aim of this study is to show the applicability of the imaging photoplethysmography (IPPG) method to measure quantitatively the vasomotor response to local thermal exposure. Seventeen healthy subjects aged 23 ± 7 years participated in the study. A warm transparent compress applied to subject’s forehead served as a thermal impact. A custom-made IPPG system operating at green polarized light was used to monitor the subject’s face continuously and simultaneously with skin temperature and electrocardiogram (ECG) recordings. We found that the thermal impact leads to an increase in the amplitude of blood pulsations (BPA) simultaneously with the skin temperature increase. However, a multiple increase in BPA remained after the compress was removed, whereas the skin temperature returned to the baseline. Moreover, the BPA increase and duration of the vasomotor response was associated with the degree of external heating. Therefore, the IPPG method allows us to quantify the parameters of capillary blood flow during local thermal exposure to the skin. This proposed technique of assessing the thermal reactivity of microcirculation can be applied for both clinical use and for biomedical research.

2011 ◽  
Vol 21 (6) ◽  
pp. 811-820 ◽  
Author(s):  
Li Pan ◽  
Zhiwei Lian ◽  
Li Lan

The purpose of this investigation was to determine whether there is gender difference in sleep comfort of healthy individuals at various temperatures. During winter, sleep quality was examined under different indoor temperatures (17, 20 and 23°C) using questionnaires and electroencephalogram (EEG). To explore the mechanism responsible for gender differences in comfortable sleeping temperatures, mean skin temperature, finger temperature and finger blood flow were measured. The results showed that females would prefer a higher ambient temperature during sleep than the men. The mean skin temperature for females was higher than that of males, whereas finger skin temperature and finger blood flow were significantly lower in females than in males. Furthermore, skin temperature and finger blood flow were more sensitive to ambient temperature with females than in males. The gender differences in preferred sleeping temperature could therefore be related to these physiological characteristics. Both subjective evaluations and EEG found better sleep quality in males under the same temperatures compared to females. Skin temperature changes over the course of the night also demonstrated longer periods of deep sleep in males compared to females.


2016 ◽  
Vol 136 (11) ◽  
pp. 1581-1585 ◽  
Author(s):  
Tota Mizuno ◽  
Takeru Sakai ◽  
Shunsuke Kawazura ◽  
Hirotoshi Asano ◽  
Kota Akehi ◽  
...  

2015 ◽  
Vol 63 (1) ◽  
pp. 100-109 ◽  
Author(s):  
Victoria Luño ◽  
Lydia Gil ◽  
Maite Olaciregui ◽  
Juan Grandía ◽  
Trinidad Ansó ◽  
...  

Artificial insemination (AI) of sows with frozen-thawed semen usually results in lower pregnancy rates and litter sizes than the use of liquid preserved semen. The present study evaluated the effectiveness of vulvar skin temperature changes as a predictor of ovulation in sows and determined the fertility rates obtained after AI with frozen-thawed semen supplemented with rosmarinic acid (RA). Semen was collected from mature boars and cryopreserved in experimental extenders supplemented with or without 105 μM of RA. Multiparous sows were inseminated with a single dose of semen when vulvar skin temperature decreased to a value below 35 °C. Intrauterine insemination was performed using 1.5 × 109 spermatozoa. The sows were slaughtered 48 h after AI and the embryos and oocytes were recovered from the oviducts. Total and progressive motility, viability and acrosome integrity were significantly (P < 0.05) higher in RA-supplemented semen samples compared with the control. Fertilisation occurred in all sows inseminated in the study, although there were no significant differences between the experimental groups. Sows inseminated with RA-supplemented semen showed a slight increase in the number of embryos recovered as compared to sows inseminated with control semen. In conclusion, insemination according to vulvar skin temperature changes resulted in successful fertilisation in all sows, although supplementation of the freezing media with RA did not improve the fertilising ability of frozen-thawed boar sperm.


1963 ◽  
Vol 18 (5) ◽  
pp. 987-990 ◽  
Author(s):  
Shanker Rao

Reports of cardiovascular responses to head-stand posture are lacking in literature. The results of the various responses, respectively, to the supine, erect, and head-stand posture, are as follows: heart rate/min 67, 84, and 69; brachial arterial pressure mm Hg 92, 90, and 108; posterior tibial arterial pressure mm Hg 98, 196, and 10; finger blood flow ml/100 ml min 4.5, 4.4, and 5.2; toe blood flow ml/100 ml min 7.1, 8.1, and 3.4; forehead skin temperature C 34.4, 34.0 and 34.3; dorsum foot skin temperature C 28.6, 28.2, and 28.2. It is inferred that the high-pressure-capacity vessels between the heart level and posterior tibial artery have little nervous control. The high-pressure baroreceptors take active part in postural adjustments of circulation. The blood pressure equating mechanism is not as efficient when vital tissues are pooled with blood as when blood supply to them is reduced. man; heart rate; blood flow; skin temperature Submitted on January 3, 1963


2021 ◽  
Vol 11 (14) ◽  
pp. 6390
Author(s):  
Marcin Maciejewski

The paper presents the research of the SteamVR tracker developed for a man-portable air-defence training system. The tests were carried out in laboratory conditions, with the tracker placed on the launcher model along with elements ensuring the faithful reproduction of operational conditions. During the measurements, the static tracker was moved and rotated in a working area. The range of translations and rotations corresponded to the typical requirements of a shooting simulator application. The results containing the registered position and orientation values were plotted on 3D charts which showed the tracker’s operation. Further analyses determined the values of the systematic and random errors for measurements of the SteamVR system operating with a custom-made tracker. The obtained results with random errors of 0.15 mm and 0.008° for position and orientation, respectively, proved the high precision of the measurements.


PEDIATRICS ◽  
1963 ◽  
Vol 32 (4) ◽  
pp. 691-702
Author(s):  
Sid Robinson

The central body temperature of a man rises gradually during the first half hour of a period of work to a higher level and this level is precisely maintained until the work is stopped; body temperature then slowly declines to the usual resting level. During prolonged work the temperature regulatory center in the hypothalamus appears to be reset at a level which is proportional to the intensity of the work and this setting is independent of environmental temperature changes ranging from cold to moderately warm. In hot environments the resistance to heat loss may be so great that all of the increased metabolic heat of work cannot be dissipated and the man's central temperature will rise above the thermostatic setting. If this condition of imbalance is continued long enough heat stroke will ensue. We have found that in a 3 mile race lasting only 14 minutes on a hot summer day a runner's rectal temperature may rise to 41.1°C., with heat stroke imminent. The physiological regulation of body temperature of men in warm environments and during the increased metabolic heat production of work is dependent on sweating to provide evaporative cooling of the skin, and on adjustments of cutaneous blood flow which determine the conductance of heat from the deeper tissues to the skin. The mechanisms of regulating these responses during work are complex and not entirely understood. Recent experiments carried out in this laboratory indicate that during work, sweating may be regulated by reflexes originating from thermal receptors in the veins draining warm blood from the muscles, summated with reflexes from the cutaneous thermal receptors, both acting through the hypothalamic center, the activity of which is increased in proportion to its own temperature. At the beginning of work the demand for blood flow to the muscles results in reflex vasoconstriction in the skin. As the body temperature rises the thermal demand predominates and the cutaneous vessels dilate, increasing heat conductance to the skin. Large increments in cardiac output and compensatory vasoconstriction in the abdominal viscera make these vascular adjustments in work possible without circulatory embarrassment.


2012 ◽  
Vol 30 (1) ◽  
pp. 27-31 ◽  
Author(s):  
Hidetoshi Mori ◽  
Tim Hideaki Tanaka ◽  
Hiroshi Kuge ◽  
Ken Sasaki

Objective To determine whether any difference exists in responses to indirect moxibustion relative to thermal stimulation sites. Methods Twenty one healthy men of mean±SD age 22.5±6.1 years were randomly divided into two groups, one receiving a single moxibustion stimulation in three locations (the three-point stimulation group, n=10 participants) and the other receiving three stimulations in one location (the one-point stimulation group, n=11 participants). The thermal stimulation sites were GV14, GV9 and GV4 acupuncture points. A thermograph was used to obtain the skin temperature on the posterior trunks of the participants. To analyse skin temperature, four arbitrary frames (the scapular, interscapular, lumbar and vertebral regions) were made on the posterior trunk. Result An increase in skin temperature on the posterior trunk was observed following both one- and three-point moxibustion administrations. The skin temperature of the lumbar region showed a significant increase after three-point stimulation compared with single-point stimulation (p=0.011). There was also a significant increase in skin temperature of the spinal region after three-point stimulation compared with one-point stimulation (p=0.046). Conclusion Administration of single moxibustion doses on the GV14, GV9 and GV4 points produces greater changes in skin temperature than three applications of moxibustion to the GV14 point only.


Sign in / Sign up

Export Citation Format

Share Document