scholarly journals Assessment of the Environmental and Societal Impacts of the Category-3 Typhoon Hato

Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 296 ◽  
Author(s):  
Eric C. H. Chow ◽  
Min Wen ◽  
Lei Li ◽  
Marco Y. T. Leung ◽  
Paxson K. Y. Cheung ◽  
...  

The destructiveness and potential hazards brought to the Pearl River Delta (PRD) by the category-3 typhoon Hato in 2017 have been studied. The results show that wind flow is one of the key parameters influenced by tropical cyclones. The observed wind at Shenzhen station changed from median southwesterly and calm northerly to strong easterly during the evolution of Hato as it approached the PRD and during landfall, respectively. The peak wind intensity at the surface level and a height of 300 m reached over 17 m s−1 and 30 m s−1, respectively. In Zhuhai, the area closest to the landfall location, the situ observation shows that the maximum wind and the maximum gust on 23 August 2017 reached 29.9 m s−1 and over 50 m s−1, respectively, which is a record-breaking intensity compared with the highest recorded intensity during tropical cyclone (TC) activity in Vicente in 2012. The maximum sea level during 23 August 2017, with an added influence from the storm surge and the astronomical tide, was found to be over 3.9 m to the west of Hong Kong. Extreme high temperature was also recorded on 22 August 2017 before the landfall, with 38.4, 38, and 36.9 °C of daily maximum temperature in Shenzhen, Macao, and Hong Kong, respectively. Based on the heat index calculated with the temperature record at Shenzhen’s station, the hot temperature hazard reached “danger” levels. On the other hand, a prominent air quality deterioration was observed on 21 August 2017. The concentrations rapidly increased to 1 time greater than those on the previous day in Hong Kong. The TC-induced sinking motion, continental advection, and less amount of cloud cover were observed before the landfall, and would be the possible factors causing the extreme high temperature and the poor air quality. This case study illustrates that the influences of Hato to the PRD were not only limited to their destructiveness during landfall, but also brought the extreme high temperature and poor air quality.

1978 ◽  
Vol 18 (94) ◽  
pp. 698 ◽  
Author(s):  
AM Paterson ◽  
I Barker ◽  
DR Lindsay

The records of five years' production in an 800 sow commercial piggery were examined and the relationships between summer temperatures, returns to service and litter size were considered. When mean daily maximum temperature exceeded 32�C during the week of service there was an increase in the number of sows failing to hold to service. The number of sows that returned to service 15-25 days after mating remained constant throughout the year, and summer infertility was characterized by an increase in the number of sows that exhibited extended, irregular return-to-service intervals. The litter size of sows that conceived during the period of summer infertility was not significantly different from that of sows conceiving at other times of the year. The data suggest that summer infertility is not due simply to fertilization failure, embryonic mortality or an increased incidence of abortions in sows mated during periods of high temperature. Neither does boar fertility appear to be in question. It seems most likely that heat stress around the time of mating may affect ovarian function, resulting in temporary infertility and an endocrine imbalance, which causes delayed, irregular returns to oestrus.


Author(s):  
Guozhong Zheng ◽  
Ke Li ◽  
Yajing Wang

High-temperature weather appears in high frequency, big strength, and long duration in the summer. It is therefore important to study the effects of high-temperature weather on sleep quality and appetite. Ten healthy college students were selected as subjects. The experiment conditions were divided by the daily maximum temperature into 28 °C, 32 °C, 36 °C, and 38 °C. The objective sleep quality was measured by an intelligent sleep monitoring belt, and the subjective sleep quality was measured by a questionnaire survey. The subjective appetites were assessed by a visual analog scale (VAS), and the objective appetites were assessed by the meal weight and the meal time. For sleep quality, the objective results indicated that the sleep quality at 32 °C was the best, followed by 28 °C, while the sleep quality at 36 °C and 38 °C was the worst. Significant effects were mainly reflected in sleep duration and shallow sleep. The subjective results showed that temperature had significant effects on sleep calmness, difficulty in falling asleep, sleep satisfaction, and sleep adequateness. For appetite, the VAS results indicated that high temperatures mainly led to a reduction of appetite at lunch time. The meal weights of lunch were larger than those of supper except for 28 °C, and the meal time of lunch and supper was longer than that of breakfast. The meal time of lunch was longer than that of supper except for 36 °C. This paper can provide a study method and reference data for the sleep quality and appetite of human in high-temperature weather.


2012 ◽  
Vol 12 (20) ◽  
pp. 9441-9458 ◽  
Author(s):  
A. M. M. Manders ◽  
E. van Meijgaard ◽  
A. C. Mues ◽  
R. Kranenburg ◽  
L. H. van Ulft ◽  
...  

Abstract. Climate change may have an impact on air quality (ozone, particulate matter) due to the strong dependency of air quality on meteorology. The effect is often studied using a global climate model (GCM) to produce meteorological fields that are subsequently used by chemical transport models. However, climate models themselves are subject to large uncertainties and fail to reproduce the present-day climate adequately. The present study illustrates the impact of these uncertainties on air quality. To this end, output from the SRES-A1B constraint transient runs with two GCMs, i.e. ECHAM5 and MIROC-hires, has been dynamically downscaled with the regional climate model RACMO2 and used to force a constant emission run with the chemistry transport model LOTOS-EUROS in a one-way coupled run covering the period 1970–2060. Results from the two climate simulations have been compared with a RACMO2-LOTOS-EUROS (RLE) simulation forced by the ERA-Interim reanalysis for the period 1989–2009. Both RLE_ECHAM and RLE_MIROC showed considerable deviations from RLE_ERA for daily maximum temperature, precipitation and wind speed. Moreover, sign and magnitude of these deviations depended on the region. The differences in average present-day concentrations between the simulations were equal to (RLE_MIROC) or even larger than (RLE_ECHAM) the differences in concentrations between present-day and future climate (2041–2060). The climate simulations agreed on a future increase in average summer ozone daily maximum concentrations of 5–10 μg m−3 in parts of Southern Europe and a smaller increase in Western and Central Europe. Annual average PM10 concentrations increased 0.5–1.0 μg m−3 in North-West Europe and the Po Valley, but these numbers are rather uncertain: overall, changes for PM10 were small, both positive and negative changes were found, and for many locations the two climate runs did not agree on the sign of the change. This illustrates that results from individual climate runs can at best indicate tendencies and should therefore be interpreted with great care.


2021 ◽  
Vol 21 (4) ◽  
pp. 23-30
Author(s):  
Ji Yoon Kang ◽  
Bong-Chur Park ◽  
Jongbae Heo ◽  
Keewook Kim

Damage caused by heatwaves has been increasing recently worldwide. As climate change led by global warming progresses, heatwaves are projected to cause the most damage. Thus, it is very important to issue an appropriate heatwave advisory so that one can be prepared for it. Considering that the degree of heat experienced by people differs depending on the difference in humidity between regions with similar summer temperatures, it is necessary to evaluate whether the issuance of a heatwave warning using only the daily maximum temperature is appropriate. This study intends to examine the applicability of the heat index considering both temperature and humidity for effective heatwave response. First, the agreement between the occurrences of heatwaves and heat-related illness, where the occurrence is decided by the daily maximum temperature and daily maximum heat index, was evaluated. The results show that when the daily maximum heat index was applied as a criterion for issuing a heatwave warning, the coincidence with the occurrence of heat-related illness was more than two times higher than when the daily maximum temperature was applied. Next, on evaluating the prediction accuracy of the heat index according to the prediction-related leading time, the accuracy of the heat index was noted to be higher than that of the temperature for all the leading times; the highest accuracy was shown at the leading time of 10 hours (NSE = 0.7196; CORR = 0.8698). Based on the results of this study, it is necessary to consider using a heat index that contains both temperature and humidity elements to issue a heatwave warning. Furthermore, to establish regional standards for heatwave warnings, the relationship between heatwave characteristics and meteorological factors should be first analyzed using long-term data from various observation points.


2012 ◽  
Vol 12 (5) ◽  
pp. 12245-12285 ◽  
Author(s):  
A. M. M. Manders ◽  
E. van Meijgaard ◽  
A. C. Mues ◽  
R. Kranenburg ◽  
L. H. van Ulft ◽  
...  

Abstract. Climate change may have an impact on air quality (ozone, particulate matter) due to the strong dependency of air quality on meteorology. The effect is often studied using a global climate model (GCM) to produce meteorological fields that are subsequently used by chemical transport models. However, climate models themselves are subject to large uncertainties and fail to adequately reproduce the present-day climate. The present study illustrates the impact of this uncertainty on air quality. To this end, output from the SRES-A1B constraint transient runs with two GCMs, i.e. ECHAM5 and MIROC-hires, has been dynamically downscaled with the regional climate model RACMO2 and used to force a constant emission run with the chemistry transport model LOTOS-EUROS in a one-way coupled run covering the period 1970–2060. Results from the two climate simulations have been compared with a RACMO2-LOTOS-EUROS (RLE) simulation forced by the ERA-Interim reanalysis for the period 1989–2009. Both RLE_ECHAM and RLE_MIROC showed considerable deviations from RLE_ERA in daily maximum temperature, precipitation and wind speed. Moreover, sign and magnitude of these deviations depended on the region. Differences in average concentrations for the present-day simulations were found of equal to (RLE_MIROC) or even larger than (RLE_ECHAM) the differences in concentration between present-day and future climate (2041–2060). The climate simulations agreed on a future increase in average summer ozone daily maximum concentrations (5–10 μg m−3) in parts of Southern Europe and a smaller increase in Western and Central Europe. Annual average PM10 concentrations increased (0.5–1.0 μg m−3) in North-West Europe and the Po Valley, but these numbers are rather uncertain. Overall, changes for PM10 were small, both positive and negative changes were found, and for many locations the two runs did not agree on the sign of the change. The approach taken here illustrates that results from individual climate runs can at best indicate tendencies and should therefore be interpreted with great care.


2013 ◽  
Vol 13 (11) ◽  
pp. 28511-28560 ◽  
Author(s):  
S. E. Pusede ◽  
D. R. Gentner ◽  
P. J. Wooldridge ◽  
E. C. Browne ◽  
A. W. Rollins ◽  
...  

Abstract. The San Joaquin Valley (SJV) experiences some of the worst ozone air quality in the US, frequently exceeding the California 8 h standard of 70.4 ppb. To improve our understanding of trends in the number of ozone violations in the SJV, we analyze observed relationships between organic reactivity, nitrogen oxides (NOx), and daily maximum temperature in the southern SJV using measurements made as part of California at the Nexus of Air Quality and Climate Change in 2010 (CalNex-SJV). We find the daytime speciated organic reactivity with respect to OH during CalNex-SJV has a temperature-independent portion with molecules typically associated with motor vehicles being the major component. At high temperatures, characteristic of days with high ozone, the largest portion of the total organic reactivity increases exponentially with temperature and is dominated by small, oxygenated organics and molecules that are unidentified. We use this simple temperature classification to consider changes in organic emissions over the last and next decade. With the CalNex-SJV observations as constraints, we examine the sensitivity of ozone production (PO3) to future NOx and organic reactivity controls. We find that PO3 is NOx-limited at all temperatures on weekends and on weekdays when daily maximum temperatures are greater than 29 °C. As a~consequence, NOx reductions are the most effective control option for reducing the frequency of future ozone violations in the southern SJV.


2016 ◽  
Vol 29 (19) ◽  
pp. 6909-6921 ◽  
Author(s):  
Ruidan Chen ◽  
Zhiping Wen ◽  
Riyu Lu

Abstract Southern China, located in the tropical–subtropical East Asian monsoonal region, presents a unique anticyclonic–cyclonic circulation pattern during extreme heat (EH), obviously different from the typical anticyclone responsible for EH in many other regions. Associated with the evolution of EH in southern China, the anticyclonic–cyclonic anomalies propagate northwestward over the Philippines and southern China. Before the EH onsets, the anticyclonic anomaly dominates southern China, resulting in stronger subsidence over southern China and stronger southerly (southwesterly) flow over the western (northern) margins of southern China. The southerly (southwesterly) flow transports more water vapor to the north of southern China, thus, together with the local stronger subsidence, resulting in drier air condition and accordingly favoring the occurrence of EH. Conversely, after the EH onsets, the cyclonic component approaches southern China and offsets the high temperature. The oscillations of temperature and circulation anomalies over southern China exhibit a periodicity of about 10 days and indicate the influence of a quasi-biweekly oscillation, which originates from the tropical western Pacific and propagates northwestward. Therefore, the 5–25-day-filtered data are extracted to further analyze the quasi-biweekly oscillation. It turns out that the evolution of the filtered circulation remarkably resembles the original anomalies with comparable amplitudes, indicating that the quasi-biweekly oscillation is critical for the occurrence of EH in southern China. The quasi-biweekly oscillation could explain more than 50% of the intraseasonal variance of daily maximum temperature Tmax and vorticity over southern China and 80% of the warming amplitude of EH onsets. The close relationship between the circulation of the quasi-biweekly oscillation and the EH occurrence indicates the possibility of medium-range forecasting for high temperature in southern China.


2014 ◽  
Vol 14 (7) ◽  
pp. 3373-3395 ◽  
Author(s):  
S. E. Pusede ◽  
D. R. Gentner ◽  
P. J. Wooldridge ◽  
E. C. Browne ◽  
A. W. Rollins ◽  
...  

Abstract. The San Joaquin Valley (SJV) experiences some of the worst ozone air quality in the US, frequently exceeding the California 8 h standard of 70.4 ppb. To improve our understanding of trends in the number of ozone violations in the SJV, we analyze observed relationships between organic reactivity, nitrogen oxides (NOx), and daily maximum temperature in the southern SJV using measurements made as part of California at the Nexus of Air Quality and Climate Change in 2010 (CalNex-SJV). We find the daytime speciated organic reactivity with respect to OH during CalNex-SJV has a temperature-independent portion with molecules typically associated with motor vehicles being the major component. At high temperatures, characteristic of days with high ozone, the largest portion of the total organic reactivity increases exponentially with temperature and is dominated by small, oxygenated organics and molecules that are unidentified. We use this simple temperature classification to consider changes in organic emissions over the last and next decade. With the CalNex-SJV observations as constraints, we examine the sensitivity of ozone production (PO3) to future NOx and organic reactivity controls. We find that PO3 is NOx-limited at all temperatures on weekends and on weekdays when daily maximum temperatures are greater than 29 °C. As a consequence, NOx reductions are the most effective control option for reducing the frequency of future ozone violations in the southern SJV.


2011 ◽  
Vol 347-353 ◽  
pp. 1994-2002
Author(s):  
Jian Ping Zhang ◽  
Yong Kun He

Taking the day numbers of daily average temperature ≥30°C and the day numbers of daily maximum temperature ≥35°C as the index of high temperature disaster, the occurrence regularity of high temperature disaster for June to September was analyzed from 1961 to 2010 in Chongqing. The results showed that there was a large inter-decadal variation in occurrence of high temperature disaster. The most severe year of high temperature disaster was the year of 2006, while the year of 1987 is the lightest one. The general trend was that it was the lowest one in the 1980s and gradually increased in the 1990s, and reached the highest value in the 2000s. The spatial distribution of the day numbers of daily average temperature ≥30°C was the same as that of the day numbers of daily maximum temperature ≥35°C. The highest values were distributed at the areas of Kaixian, Yunyang, Wushan in the Northeast part and Fengdu, Fuling in the middle part and Banan,Shapingba,Beibei in urban district and Qijiang in the southwest part. The lowest values were distributed at the areas of Xiushan,Youyang,Qianjiang in the southeast part and Chengkou,Fengjie in the northeast part and Dazu,Rongchang in the west part.


2014 ◽  
Vol 16 (5) ◽  
pp. 919-928 ◽  

<div> <p>This paper studies the characteristics of the heat waves that were observed in Athens, Greece since 1951. A heat wave is detected when two temperature criteria are fulfilled at the city centre: the daily maximum temperature value is at least 37 <sup>o</sup>C and the daily average temperature value is at least 31 <sup>o</sup>C. Information about the intensity, duration, timing in season and annual frequency of occurrence of heat waves were extracted. The slope of the linear fit of the annual number of heat wave days indicated that 1.30 more heat wave days per year were observed after 1992. The intensity and the duration of heat waves have also increased since 90s, while heat wave days have been detected during the whole summer since then, even during the first days of September. Additionally, air quality at the centre and at a suburb of Athens during the heat wave days that were identified during the last decade is examined. The daily average value of PM<sub>10</sub> concentration exceeded 50 μg m<sup>-3</sup> in 65% and 59% of the heat wave days at the urban and the suburban site, respectively, while the information and the alert O<sub>3</sub> threshold were exceeded in 17% and 5% of the heat wave days, respectively, at the suburban site. The degradation of air quality during heat wave days is also verified by the means of the common air quality index. Moreover, it was found that O<sub>3</sub> levels decrease when heat waves last more than 6 days.&nbsp;</p> </div> <p>&nbsp;</p>


Sign in / Sign up

Export Citation Format

Share Document