scholarly journals Applicability of Heat Index for Effective Heatwave Response

2021 ◽  
Vol 21 (4) ◽  
pp. 23-30
Author(s):  
Ji Yoon Kang ◽  
Bong-Chur Park ◽  
Jongbae Heo ◽  
Keewook Kim

Damage caused by heatwaves has been increasing recently worldwide. As climate change led by global warming progresses, heatwaves are projected to cause the most damage. Thus, it is very important to issue an appropriate heatwave advisory so that one can be prepared for it. Considering that the degree of heat experienced by people differs depending on the difference in humidity between regions with similar summer temperatures, it is necessary to evaluate whether the issuance of a heatwave warning using only the daily maximum temperature is appropriate. This study intends to examine the applicability of the heat index considering both temperature and humidity for effective heatwave response. First, the agreement between the occurrences of heatwaves and heat-related illness, where the occurrence is decided by the daily maximum temperature and daily maximum heat index, was evaluated. The results show that when the daily maximum heat index was applied as a criterion for issuing a heatwave warning, the coincidence with the occurrence of heat-related illness was more than two times higher than when the daily maximum temperature was applied. Next, on evaluating the prediction accuracy of the heat index according to the prediction-related leading time, the accuracy of the heat index was noted to be higher than that of the temperature for all the leading times; the highest accuracy was shown at the leading time of 10 hours (NSE = 0.7196; CORR = 0.8698). Based on the results of this study, it is necessary to consider using a heat index that contains both temperature and humidity elements to issue a heatwave warning. Furthermore, to establish regional standards for heatwave warnings, the relationship between heatwave characteristics and meteorological factors should be first analyzed using long-term data from various observation points.

2017 ◽  
Vol 145 (12) ◽  
pp. 2603-2610 ◽  
Author(s):  
A. MILAZZO ◽  
L. C. GILES ◽  
Y. ZHANG ◽  
A. P. KOEHLER ◽  
J. E. HILLER ◽  
...  

SUMMARYCampylobacterspp. is a commonly reported food-borne disease with major consequences for morbidity. In conjunction with predicted increases in temperature, proliferation in the survival of microorganisms in hotter environments is expected. This is likely to lead, in turn, to an increase in contamination of food and water and a rise in numbers of cases of infectious gastroenteritis. This study assessed the relationship ofCampylobacterspp. with temperature and heatwaves, in Adelaide, South Australia.We estimated the effect of (i) maximum temperature and (ii) heatwaves on dailyCampylobactercases during the warm seasons (1 October to 31 March) from 1990 to 2012 using Poisson regression models.There was no evidence of a substantive effect of maximum temperature per 1 °C rise (incidence rate ratio (IRR) 0·995, 95% confidence interval (95% CI) 0·993–0·997) nor heatwaves (IRR 0·906, 95% CI 0·800–1·026) onCampylobactercases. In relation to heatwave intensity, which is the daily maximum temperature during a heatwave, notifications decreased by 19% within a temperature range of 39–40·9 °C (IRR 0·811, 95% CI 0·692–0·952). We found little evidence of an increase in risk and lack of association betweenCampylobactercases and temperature or heatwaves in the warm seasons. Heatwave intensity may play a role in that notifications decreased with higher temperatures. Further examination of the role of behavioural and environmental factors in an effort to reduce the risk of increasedCampylobactercases is warranted.


Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 296 ◽  
Author(s):  
Eric C. H. Chow ◽  
Min Wen ◽  
Lei Li ◽  
Marco Y. T. Leung ◽  
Paxson K. Y. Cheung ◽  
...  

The destructiveness and potential hazards brought to the Pearl River Delta (PRD) by the category-3 typhoon Hato in 2017 have been studied. The results show that wind flow is one of the key parameters influenced by tropical cyclones. The observed wind at Shenzhen station changed from median southwesterly and calm northerly to strong easterly during the evolution of Hato as it approached the PRD and during landfall, respectively. The peak wind intensity at the surface level and a height of 300 m reached over 17 m s−1 and 30 m s−1, respectively. In Zhuhai, the area closest to the landfall location, the situ observation shows that the maximum wind and the maximum gust on 23 August 2017 reached 29.9 m s−1 and over 50 m s−1, respectively, which is a record-breaking intensity compared with the highest recorded intensity during tropical cyclone (TC) activity in Vicente in 2012. The maximum sea level during 23 August 2017, with an added influence from the storm surge and the astronomical tide, was found to be over 3.9 m to the west of Hong Kong. Extreme high temperature was also recorded on 22 August 2017 before the landfall, with 38.4, 38, and 36.9 °C of daily maximum temperature in Shenzhen, Macao, and Hong Kong, respectively. Based on the heat index calculated with the temperature record at Shenzhen’s station, the hot temperature hazard reached “danger” levels. On the other hand, a prominent air quality deterioration was observed on 21 August 2017. The concentrations rapidly increased to 1 time greater than those on the previous day in Hong Kong. The TC-induced sinking motion, continental advection, and less amount of cloud cover were observed before the landfall, and would be the possible factors causing the extreme high temperature and the poor air quality. This case study illustrates that the influences of Hato to the PRD were not only limited to their destructiveness during landfall, but also brought the extreme high temperature and poor air quality.


1978 ◽  
Vol 18 (94) ◽  
pp. 698 ◽  
Author(s):  
AM Paterson ◽  
I Barker ◽  
DR Lindsay

The records of five years' production in an 800 sow commercial piggery were examined and the relationships between summer temperatures, returns to service and litter size were considered. When mean daily maximum temperature exceeded 32�C during the week of service there was an increase in the number of sows failing to hold to service. The number of sows that returned to service 15-25 days after mating remained constant throughout the year, and summer infertility was characterized by an increase in the number of sows that exhibited extended, irregular return-to-service intervals. The litter size of sows that conceived during the period of summer infertility was not significantly different from that of sows conceiving at other times of the year. The data suggest that summer infertility is not due simply to fertilization failure, embryonic mortality or an increased incidence of abortions in sows mated during periods of high temperature. Neither does boar fertility appear to be in question. It seems most likely that heat stress around the time of mating may affect ovarian function, resulting in temporary infertility and an endocrine imbalance, which causes delayed, irregular returns to oestrus.


2009 ◽  
Vol 15 (1-2) ◽  
Author(s):  
L. Lakatos ◽  
S. Musacchi ◽  
T. Szabó ◽  
G. Kocsisné Molnár ◽  
Z. Szabó ◽  
...  

The trees observed are grown at Ujfehert6, Eastern Hungary in a gene bank with 555 pear cultivars. Each of the cultivars was monitored for its dates of: the beginning of bloom, main bloom and the end of bloom and ripe phenophasis separately between I 984 and 2002. We analyzed the statistical features, frequency, distribution of these phenophasis and its' correlation the meteorological variables bet ween the interval. During this period the meteorological database recorded the following variables: daily mean temperature (°C), daily maximum temperature (0C), daily mini m um temperature (0C), daily precipitation (mm), daily hours of bright sunshine, daily means or the differences between the day-time and night-time temperatures (0C). For the analysis of data the cultivars have been grouped according to dates of maturity, blooming period as well as types of the seasons. Groups of maturity dates: summer ripe, autumnal ripening, winter ripe cultivars. Groups of blooming dates: early blooming, intermediate blooming, late blooming cultivars. At all the separated groups we analyzed the relationship between phenophasis and meteorological variables. During the 18 years of observation , the early blooming cultivars started blooming on 10-21 April, those of intermediate bloom date started flowering bet ween 20 April and 3 May, whereas the late blooming group started on 2- 10 May. Among the meteorological variables of the former autumn and winter periods, the winter maxima were the most active factor influencing the start dates of bloom in the subsequent spring. For the research of fruit growing-weather relationships we used simple, well known statistical methods, correlation and regression analysis. We used the SPSS 1 1.0 software for the linear regression fitting and for calculation of dispersions as well. The 1ables made by Excel programme.


2019 ◽  
Vol 6 (1) ◽  
pp. e000341 ◽  
Author(s):  
Genki Arikawa ◽  
Yoshinori Fujii ◽  
Maiku Abe ◽  
Ngan Thi Mai ◽  
Shuya Mitoma ◽  
...  

Highly pathogenic avian influenza (HPAI) outbreaks engender a severe economic impact on the poultry industry and public health. Migratory waterfowl are considered the natural hosts of HPAI virus, and HPAI viruses are known to be transmitted over long distances during seasonal bird migration. Bird migration is greatly affected by the weather. Many studies have shown the relationship between either autumn or spring bird migration and climate. However, few studies have shown the relationship between annual bird migration and annual weather. This study aimed to establish a model for the number of migratory waterfowl involved in HPAI virus transmission based on meteorological data. From 136 species of waterfowl that were observed at Futatsudate in Miyazaki, Japan, from 2008 to 2016, we selected potential high-risk species that could introduce the HPAI virus into Miyazaki and defined them as ‘risky birds’. We also performed cluster analysis to select meteorological factors. We then analysed the meteorological data and the total number of risky birds using a generalised linear mixed model. We selected 10 species as risky birds: Mallard (Anas platyrhynchos), Northern pintail (Anas acuta), Eurasian wigeon (Anas penelope), Eurasian teal (Anas crecca), Common pochard (Aythya ferina), Eurasian coot (Fulica atra), Northern shoveler (Anas clypeata), Common shelduck (Tadorna tadorna), Tufted duck (Aythya fuligula) and Herring gull (Larus argentatus). We succeeded in clustering 35 meteorological factors into four clusters and identified three meteorological factors associated with their migration: (1) the average daily maximum temperature; (2) the mean value of global solar radiation and (3) the maximum daily precipitation. We thus demonstrated the relationship between the number of risky birds and meteorological data. The dynamics of migratory waterfowl was relevant to the risk of an HPAI outbreak, and our data could contribute to cost and time savings in strengthening preventive measures against epidemics.


2021 ◽  
pp. 1-13
Author(s):  
Jiangfeng An ◽  
Jun Wu ◽  
Penghua Zheng ◽  
Ying Pan ◽  
Xuejie Zhou ◽  
...  

The environmental adaptabilities of low-density polyethylene (LDPE) play an important role for high-speed trains’ reliability and comfort. The weathering of LDPE depends on environment factors, while the complexity of the weathering processes inhibits the evaluation of environmental weathering risks. To elucidate the correlation between weathering and environmental factors, and to predict the weathering risk of target areas of interest, three-year-long natural weathering tests were conducted at twelve natural exposure stations in China. Properties of weathered LDPE were compared and analysed using factor analysis. The fuzzy recognition method based on analytic hierarchy process (AHP) was established and used to predict the weathering risk based on environmental database. The results indicate that the factor scores can partitioned the atmospheric environments into five weathering risk grades. This article used the accumulated cumulative temperature of the daily maximum temperature for weathering risk evaluation, which is more scientific than the annual average temperature widely used and is useful for revealing the difference in LDPE weathering in Turpan and Korla. A comparative chart of LDPE’s weathering risk in China was established by this fuzzy recognition method for the first time, which caters to the continuous extension of high-speed railway to new regions.


2009 ◽  
Vol 147 (5) ◽  
pp. 569-580 ◽  
Author(s):  
H. F. ZHENG ◽  
L. D. CHEN ◽  
X. Z. HAN

SUMMARYUnderstanding how crop systems might respond to recent climate change is fundamental to the successful adaptation of efforts for sustainable agriculture. In the present paper, records over the period 1987–2004 from a long-term agroecosystem experiment carried out in Northeast China were used to explore the impacts of global warming on soybean (Glycine max (L) Merr.) yields under different controlled fertilization treatments. The results indicated that soybean yields were closely related to growing season temperatures. In most fertilization treatments, soybean yields showed a significant negative response to higher daily maximum temperature and greater diurnal temperature range (DTR), whereas they showed a significant positive response to higher daily minimum temperature. Analysis of covariance showed that these responses of soybean yields to temperature variables did not differ across fertilization treatments. Overall, soybean yields have declined significantly due to the warming trends since 1987. This has been mainly attributed to the higher daily maximum temperature. The present report demonstrates that soybean production in Northeast China may face challenges due to global warming unless potential adaptation options are adopted. The true mechanisms behind these yield impacts need further investigation to address effective agricultural adaptations for soybean systems to adapt to global warming.


2013 ◽  
Vol 6 (1) ◽  
pp. 81-97 ◽  
Author(s):  
Ewa Łupikasza ◽  
Tadeusz Niedźwiedź

Abstract The paper aims to present research into both the long-term variability in the ice days in Svalbard representing the Atlantic sector of the Arctic, and their relations to atmospheric circulation. Ice days are defined as days with a daily maximum temperature below 0°C (Tmax<0°C). They are considered to be amongst the most important indices of current climate change. All the available data on daily maximum air temperature from three Norwegian stations (Svalbard Airport (Svalbard Lufthavn), Bjørnøya and Hopen) and from the Polish Polar Station in Hornsund (SW Spitsbergen) have been employed. The relevance of atmospheric circulation to the frequency of the occurrence of ice days was evaluated by calculating the Spearman correlation coefficients between the frequency of ice days and three regional circulation indices: zonal westerly circulation index (W), meridional southerly circulation index (S) and index of cyclonicity (C). At all the stations the number of ice days exhibited significant decreasing trends in the period of 1979-2012.


2021 ◽  
Author(s):  
Annika Stechemesser ◽  
Leonie Wenz ◽  
Maximilian Kotz ◽  
Anders Levermann

&lt;p&gt;Temperature has been identified as a potential cause for human conflict. Conflict poses a fundamental obstacle to Sustainable Development Goal 16 which acknowledges the importance of building peace, justice and strong institutions for people around the world. Today, conflict is no longer limited to the physical space. The increasing digitalization of all areas of everyday life reinforces the impact of cyber racism, cyber discrimination and online hate. It disproportionally affects groups with an already increased risk of marginalization such as women, lgbtq+ youth or people of color, causing affected persons to feel unsafe in digital spaces and limiting their access to online services. Twitter is one of the biggest social media platforms with more than 300 million active users around the world. We provide evidence that the amount of racist content posted to Twitter is non-linearly influenced by temperature. Exploiting the linguistic plurality of Europe, we investigate the relationship between daily maximum temperature and racist or xenophobic content online using a fixed-effects panel-regression approach for countries spanning multiple European climatic zones. Racist tweets are lowest between daily temperatures of 8&amp;#176;C to 17&amp;#176;C whereas ambient temperatures warmer or colder are associated with steep, non-linear increases. Within the next 30 years, temperatures are projected to shift with new heat extremes being reached. To quantify the potential impact on cyber hate, the number of days outside this range, weighted by the identified temperature-racist-tweet response curve is projected to increase across Europe. Results suggest, that future warming and more extreme temperatures could aggravate xenophobia and racism online, further hindering the achievement of SDG 16 and posing a challenge for future human well-being. &amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document