scholarly journals Low-Cost Air Quality Sensors: One-Year Field Comparative Measurement of Different Gas Sensors and Particle Counters with Reference Monitors at Tušimice Observatory

Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 492 ◽  
Author(s):  
Petra Bauerová ◽  
Adriana Šindelářová ◽  
Štěpán Rychlík ◽  
Zbyněk Novák ◽  
Josef Keder

With attention increasing regarding the level of air pollution in different metropolitan and industrial areas worldwide, interest in expanding the monitoring networks by low-cost air quality sensors is also increasing. Although the role of these small and affordable sensors is rather supplementary, determination of the measurement uncertainty is one of the main questions of their applicability because there is no certificate for quality assurance of these non-reference technologies. This paper presents the results of almost one-year field testing measurements, when the data from different low-cost sensors (for SO2, NO2, O3, and CO: Cairclip, Envea, FR; for PM1, PM2.5, and PM10: PMS7003, Plantower, CHN, and OPC-N2, Alphasense, UK) were compared with co-located reference monitors used within the Czech national ambient air quality monitoring network. The results showed that in addition to the given reduced measurement accuracy of the sensors, the data quality depends on the early detection of defective units and changes caused by the effect of meteorological conditions (effect of air temperature and humidity on gas sensors and effect of air humidity with condensation conditions on particle counters), or by the interference of different pollutants (especially in gas sensors). Comparative measurement is necessary prior to each sensor’s field applications.

2020 ◽  
Author(s):  
ahmet mustafa tepe ◽  
Matthias Ketzel ◽  
Ulaş Im ◽  
Güray Doğan

<p>Antalya is a city at the Turkish Riviera located on Mediterranean coast of southwestern Turkey and it is the fifth populated city in Turkey. The city has a downtown population of over 2 million. Agriculture and tourism activities are the most important sources of income in the region. Antalya is a very important tourism destination and welcomes more than 10 million tourists every year.</p><p>Nowadays, with the rapid increase in urbanization, air pollution has been one of the most important environmental problems especially in big cities. In order to solve the pollution problems as soon as possible, the largest air pollution sources must be determined first. Air quality models are used extensively in air quality studies as they allow these problems to be identified quickly, cheaply and effectively. The semi-parameterized Operational Street Pollution Model (OSPM<sup>®</sup>) has been widely used around the globe to determine levels of air pollution on local or street-scale for urban street canyons (Berkowicz 2000, Ketzel et al. 2012).</p><p>For this study; four street canyons along the main roads in central Antalya were selected (100. Yıl Avenue, Yener Ulusoy Avenue, Adnan Menderes Avenue, Kızılırmak Street).  Modeling has been carried out for a period of one year (July 2014 – July 2015) for the pollutants PM2.5 and PM2.5-10.</p><p>The urban background concentrations for particulate matter (PM2.5 and PM2.5-10) were collected using stack filter unit system. Total of 169 samples were collected once in a two-day period between July 2014 and July 2015 (Tepe 2016). Meteorological parameters and traffic data used in this study were obtained from Turkish State Meteorological Service and Turkish Statistical Institute, respectively.</p><p><strong><span>REFERENCES</span></strong></p><p>Berkowicz, R. OSPM - A Parameterised Street Pollution Model. Environ. Monit. Assess. 65, 323 331 (2000)</p><p>Ketzel M, Jensen SS, Brandt J, Ellermann T, Olesen HR, Berkowicz R and Hertel O. Evaluation of the Street Pollution Model OSPM for Measurements at 12 Streets Stations Using a Newly Developed and Freely Available Evaluation Tool. J Civil Environ Eng, S1:004 (2012)</p><p>Tepe, A. Investigation of Concentrations and Source Apportionment of Metals Attached to PM2.5 and PM10 in Antalya Ambient Air (Unpublished master’s thesis). Akdeniz University, Antalya, Turkey (2016)</p>


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5175
Author(s):  
Abdul Samad ◽  
Daniel Ricardo Obando Nuñez ◽  
Grecia Carolina Solis Castillo ◽  
Bernd Laquai ◽  
Ulrich Vogt

Using low-cost gas sensors for air quality monitoring promises cost effective and convenient measurement systems. Nevertheless, the results obtained have a questionable quality due to different factors that can affect sensor performance. The most discussed ones are relative humidity and air temperature. This investigation aimed to assess the behavior of B4-series low-cost gas sensors from Alphasense for measuring CO, NO, NO2, and O3 for different levels of relative humidity and temperature. These low-cost gas sensors were tested for six relative humidity levels from 10% to 85% with increasing steps of 15% and four temperature levels of 10 °C, 25 °C, 35 °C, and 45 °C against reference instruments in the laboratory. The effect of these parameters on low-cost gas sensors was quantified in laboratory from which a correction algorithm was calculated, which was then applied to the field data. The applied algorithm improved the data quality of the low-cost gas sensors in most of the cases. Additionally, a low-cost dryer was assessed to reduce the influence of these factors on the low-cost gas sensors, which also proved to be suitable to enhance the data quality.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2843 ◽  
Author(s):  
Alice Cavaliere ◽  
Federico Carotenuto ◽  
Filippo Di Gennaro ◽  
Beniamino Gioli ◽  
Giovanni Gualtieri ◽  
...  

A low-cost air quality station has been developed for real-time monitoring of main atmospheric pollutants. Sensors for CO, CO2, NO2, O3, VOC, PM2.5 and PM10 were integrated on an Arduino Shield compatible board. As concerns PM2.5 and PM10 sensors, the station underwent a laboratory calibration and later a field validation. Laboratory calibration has been carried out at the headquarters of CNR-IBIMET in Florence (Italy) against a TSI DustTrak reference instrument. A MATLAB procedure, implementing advanced mathematical techniques to detect possible complex non-linear relationships between sensor signals and reference data, has been developed and implemented to accomplish the laboratory calibration. Field validation has been performed across a full “heating season” (1 November 2016 to 15 April 2017) by co-locating the station at a road site in Florence where an official fixed air quality station was in operation. Both calibration and validation processes returned fine scores, in most cases better than those achieved for similar systems in the literature. During field validation, in particular, for PM2.5 and PM10 mean biases of 0.036 and 0.598 µg/m3, RMSE of 4.056 and 6.084 µg/m3, and R2 of 0.909 and 0.957 were achieved, respectively. Robustness of the developed station, seamless deployed through a five and a half month outdoor campaign without registering sensor failures or drifts, is a further key point.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 91
Author(s):  
Santiago Lopez-Restrepo ◽  
Andres Yarce ◽  
Nicolás Pinel ◽  
O.L. Quintero ◽  
Arjo Segers ◽  
...  

The use of low air quality networks has been increasing in recent years to study urban pollution dynamics. Here we show the evaluation of the operational Aburrá Valley’s low-cost network against the official monitoring network. The results show that the PM2.5 low-cost measurements are very close to those observed by the official network. Additionally, the low-cost allows a higher spatial representation of the concentrations across the valley. We integrate low-cost observations with the chemical transport model Long Term Ozone Simulation-European Operational Smog (LOTOS-EUROS) using data assimilation. Two different configurations of the low-cost network were assimilated: using the whole low-cost network (255 sensors), and a high-quality selection using just the sensors with a correlation factor greater than 0.8 with respect to the official network (115 sensors). The official stations were also assimilated to compare the more dense low-cost network’s impact on the model performance. Both simulations assimilating the low-cost model outperform the model without assimilation and assimilating the official network. The capability to issue warnings for pollution events is also improved by assimilating the low-cost network with respect to the other simulations. Finally, the simulation using the high-quality configuration has lower error values than using the complete low-cost network, showing that it is essential to consider the quality and location and not just the total number of sensors. Our results suggest that with the current advance in low-cost sensors, it is possible to improve model performance with low-cost network data assimilation.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 647
Author(s):  
Tobias Baur ◽  
Johannes Amann ◽  
Caroline Schultealbert ◽  
Andreas Schütze

More and more metal oxide semiconductor (MOS) gas sensors with digital interfaces are entering the market for indoor air quality (IAQ) monitoring. These sensors are intended to measure volatile organic compounds (VOCs) in indoor air, an important air quality factor. However, their standard operating mode often does not make full use of their true capabilities. More sophisticated operation modes, extensive calibration and advanced data evaluation can significantly improve VOC measurements and, furthermore, achieve selective measurements of single gases or at least types of VOCs. This study provides an overview of the potential and limits of MOS gas sensors for IAQ monitoring using temperature cycled operation (TCO), calibration with randomized exposure and data-based models trained with advanced machine learning. After lab calibration, a commercial digital gas sensor with four different gas-sensitive layers was tested in the field over several weeks. In addition to monitoring normal ambient air, release tests were performed with compounds that were included in the lab calibration, but also with additional VOCs. The tests were accompanied by different analytical systems (GC-MS with Tenax sampling, mobile GC-PID and GC-RCP). The results show quantitative agreement between analytical systems and the MOS gas sensor system. The study shows that MOS sensors are highly suitable for determining the overall VOC concentrations with high temporal resolution and, with some restrictions, also for selective measurements of individual components.


2016 ◽  
Vol 217 ◽  
pp. 42-51 ◽  
Author(s):  
Carola Graf ◽  
Athanasios Katsoyiannis ◽  
Kevin C. Jones ◽  
Andrew J. Sweetman

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7919
Author(s):  
Sjoerd van Ratingen ◽  
Jan Vonk ◽  
Christa Blokhuis ◽  
Joost Wesseling ◽  
Erik Tielemans ◽  
...  

Low-cost sensor technology has been available for several years and has the potential to complement official monitoring networks. The current generation of nitrogen dioxide (NO2) sensors suffers from various technical problems. This study explores the added value of calibration models based on (multiple) linear regression including cross terms on the performance of an electrochemical NO2 sensor, the B43F manufactured by Alphasense. Sensor data were collected in duplicate at four reference sites in the Netherlands over a period of one year. It is shown that a calibration, using O3 and temperature in addition to a reference NO2 measurement, improves the prediction in terms of R2 from less than 0.5 to 0.69–0.84. The uncertainty of the calibrated sensors meets the Data Quality Objective for indicative methods specified by the EU directive in some cases and it was verified that the sensor signal itself remains an important predictor in the multilinear regressions. In practice, these sensors are likely to be calibrated over a period (much) shorter than one year. This study shows the dependence of the quality of the calibrated signal on the choice of these short (monthly) calibration and validation periods. This information will be valuable for determining short-period calibration strategies.


2021 ◽  
Author(s):  
Sonu Kumar Jha ◽  
Mohit Kumar ◽  
Vipul Arora ◽  
Sachchida Nand Tripathi ◽  
Vidyanand Motiram Motghare ◽  
...  

<div>Air pollution is a severe problem growing over time. A dense air-quality monitoring network is needed to update the people regarding the air pollution status in cities. A low-cost sensor device (LCSD) based dense air-quality monitoring network is more viable than continuous ambient air quality monitoring stations (CAAQMS). An in-field calibration approach is needed to improve agreements of the LCSDs to CAAQMS. The present work aims to propose a calibration method for PM2.5 using domain adaptation technique to reduce the collocation duration of LCSDs and CAAQMS. A novel calibration approach is proposed in this work for the measured PM2.5 levels of LCSDs. The dataset used for the experimentation consists of PM2.5 values and other parameters (PM10, temperature, and humidity) at hourly duration over a period of three months data. We propose new features, by combining PM2.5, PM10, temperature, and humidity, that significantly improved the performance of calibration. Further, the calibration model is adapted to the target location for a new LCSD with a collocation time of two days. The proposed model shows high correlation coefficient values (R2) and significantly low mean absolute percentage error (MAPE) than that of other baseline models. Thus, the proposed model helps in reducing the collocation time while maintaining high calibration performance.</div>


Sign in / Sign up

Export Citation Format

Share Document