scholarly journals Vortex Initialization in the NCEP Operational Hurricane Models

Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 968
Author(s):  
Qingfu Liu ◽  
Xuejin Zhang ◽  
Mingjing Tong ◽  
Zhan Zhang ◽  
Bin Liu ◽  
...  

This paper describes the vortex initialization (VI) currently used in NCEP operational hurricane models (HWRF and HMON, and possibly HAFS in the future). The VI corrects the background fields for hurricane models: it consists of vortex relocation, and size and intensity corrections. The VI creates an improved background field for the data assimilation and thereby produces an improved analysis for the operational hurricane forecast. The background field after VI can be used as an initial field (as in the HMON model, without data assimilation) or a background field for data assimilation (as in HWRF model).

2021 ◽  
Vol 13 (22) ◽  
pp. 4556
Author(s):  
Dongmei Xu ◽  
Xuewei Zhang ◽  
Hong Li ◽  
Haiying Wu ◽  
Feifei Shen ◽  
...  

In this study, the case of super typhoon Lekima, which landed in Jiangsu and Zhejiang Province on 4 August 2019, is numerically simulated. Based on the Weather Research and Forecasting (WRF) model, the sensitivity experiments are carried out with different combinations of physical parameterization schemes. The results show that microphysical schemes have obvious impacts on the simulation of the typhoon’s track, while the intensity of the simulated typhoon is more sensitive to surface physical schemes. Based on the results of the typhoon’s track and intensity simulation, one parameterization scheme was further selected to provide the background field for the following data assimilation experiments. Using the three-dimensional variational (3DVar) data assimilation method, the Microwave Humidity Sounder-2 (MWHS-2) radiance data onboard the Fengyun-3D satellite (FY-3D) were assimilated for this case. It was found that the assimilation of the FY-3D MWHS-2 radiance data was able to optimize the initial field of the numerical model in terms of the model variables, especially for the humidity. Finally, by the inspection of the typhoon’s track and intensity forecast, it was found that the assimilation of FY-3D MWHS-2 radiance data improved the skill of the prediction for both the typhoon’s track and intensity.


2015 ◽  
Vol 143 (1) ◽  
pp. 153-164 ◽  
Author(s):  
Feimin Zhang ◽  
Yi Yang ◽  
Chenghai Wang

Abstract In this paper, the Weather Research and Forecasting (WRF) Model with the three-dimensional variational data assimilation (WRF-3DVAR) system is used to investigate the impact on the near-surface wind forecast of assimilating both conventional data and Advanced Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder (ATOVS) radiances compared with assimilating conventional data only. The results show that the quality of the initial field and the forecast performance of wind in the lower atmosphere are improved in both assimilation cases. Assimilation results capture the spatial distribution of the wind speed, and the observation data assimilation has a positive effect on near-surface wind forecasts. Although the impacts of assimilating ATOVS radiances on near-surface wind forecasts are limited, the fine structure of local weather systems illustrated by the WRF-3DVAR system suggests that assimilating ATOVS radiances has a positive effect on the near-surface wind forecast under conditions that ATOVS radiances in the initial condition are properly amplified. Assimilating conventional data is an effective approach for improving the forecast of the near-surface wind.


2020 ◽  
Vol 21 (9) ◽  
pp. 2023-2039
Author(s):  
Dikra Khedhaouiria ◽  
Stéphane Bélair ◽  
Vincent Fortin ◽  
Guy Roy ◽  
Franck Lespinas

AbstractConsistent and continuous fields provided by precipitation analyses are valuable for hydrometeorological applications and land data assimilation modeling, among others. Providing uncertainty estimates is a logical step in the analysis development, and a consistent approach to reach this objective is the production of an ensemble analysis. In the present study, a 6-h High-Resolution Ensemble Precipitation Analysis (HREPA) was developed for the domain covering Canada and the northern part of the contiguous United States. The data assimilation system is the same as the Canadian Precipitation Analysis (CaPA) and is based on optimal interpolation (OI). Precipitation from the Canadian national 2.5-km atmospheric prediction system constitutes the background field of the analysis, while at-site records and radar quantitative precipitation estimates (QPE) compose the observation datasets. By using stochastic perturbations, multiple observations and background field random realizations were generated to subsequently feed the data assimilation system and provide 24 HREPA members plus one control run. Based on one summer and one winter experiment, HREPA capabilities in terms of bias and skill were verified against at-site observations for different climatic regions. The results indicated HREPA’s reliability and skill for almost all types of precipitation events in winter, and for precipitation of medium intensity in summer. For both seasons, HREPA displayed resolution and sharpness. The overall good performance of HREPA and the lack of ensemble precipitation analysis (PA) at such spatiotemporal resolution in the literature motivate further investigations on transitional seasons and more advanced perturbation approaches.


2019 ◽  
Vol 12 (9) ◽  
pp. 4031-4051 ◽  
Author(s):  
Shizhang Wang ◽  
Zhiquan Liu

Abstract. A reflectivity forward operator and its associated tangent linear and adjoint operators (together named RadarVar) were developed for variational data assimilation (DA). RadarVar can analyze both rainwater and ice-phase species (snow and graupel) by directly assimilating radar reflectivity observations. The results of three-dimensional variational (3D-Var) DA experiments with a 3 km grid mesh setting of the Weather Research and Forecasting (WRF) model showed that RadarVar was effective at producing an analysis of reflectivity pattern and intensity similar to the observed data. Two to three outer loops with 50–100 iterations in each loop were needed to obtain a converged 3-D analysis of reflectivity, rainwater, snow, and graupel, including the melting layers with mixed-phase hydrometeors. It is shown that the deficiencies in the analysis using this operator, caused by the poor quality of the background fields and the use of the static background error covariance, can be partially resolved by using radar-retrieved hydrometeors in a preprocessing step and tuning the spatial correlation length scales of the background errors. The direct radar reflectivity assimilation using RadarVar also improved the short-term (2–5 h) precipitation forecasts compared to those of the experiment without DA.


1997 ◽  
Vol 14 (3) ◽  
pp. 533-544 ◽  
Author(s):  
Donald C. Hood ◽  
William Seiple ◽  
Karen Holopigian ◽  
Vivienne Greenstein

AbstractThe multi-input technique of Sutter and Tran (1992) yields multiple focal ERGs. The purpose here was to compare the components of this multifocal ERG to the components of the standard, full-field ERG. To record multifocal ERGs, an array of 103 hexagons was displayed on a monitor. Full-field (Ganzfeld) ERGs were elicited by flashes presented upon steady background fields. The latencies of two prominent subcomponents of the full-field ERG were altered by varying the intensity of the incremental flash or the intensity of the background field. By showing that similar manipulations of the multi-input parameters produce similar changes in latency, we were able to relate the components of the multifocal ERG to the components of the full-field ERG. The biphasic responses of the multifocal ERG appear to be generated by the same cells generating the a-wave and positive peaks of the full-field cone ERG.


2019 ◽  
Vol 147 (4) ◽  
pp. 1351-1373 ◽  
Author(s):  
Xu Lu ◽  
Xuguang Wang

Abstract Assimilating inner-core observations collected from recent field campaign programs such as Tropical Cyclone Intensity (TCI) and Intensity Forecasting Experiment (IFEX) together with the enhanced atmospheric motion vectors (AMVs) produce realistic three-dimensional (3D) analyses using the newly developed GSI-based, continuously cycled, dual-resolution hybrid ensemble–variational data assimilation (DA) system for the Hurricane Weather Research and Forecasting (HWRF) Model for Hurricane Patricia (2015). However, more persistent surface wind maximum spindown is found in the intensity forecast initialized from the realistic analyses produced by the DA system but not from the unrealistic initial conditions produced through vortex modification. Diagnostics in this study reveal that the spindown issue is likely attributed to the deficient HWRF Model physics that are unable to maintain the realistic 3D structures from the DA analysis. The horizontal diffusion is too strong to maintain the realistically observed vertical oscillation of radial wind near the eyewall region. The vertical diffusion profile cannot produce a sufficiently strong secondary circulation connecting the realistically elevated upper-level outflow produced in the DA analysis. Further investigations with different model physics parameterizations demonstrate that spindown can be alleviated by modifying model physics parameterizations. In particular, a modified turbulent mixing parameterization scheme together with a reduced horizontal diffusion is found to significantly alleviate the spindown issue and to improve the intensity forecast. Additional experiments show that the peak-simulated intensity and rapid intensification rate can be further improved by increasing the model resolution. But the model resolution is not as important as model physics in the spindown alleviation.


2004 ◽  
Vol 43 (5) ◽  
pp. 810-820 ◽  
Author(s):  
L. P. Riishøjgaard ◽  
R. Atlas ◽  
G. D. Emmitt

Abstract Through the use of observation operators, modern data assimilation systems have the capability to ingest observations of quantities that are not themselves model variables but are mathematically related to those variables. An example of this is the so-called line-of-sight (LOS) winds that a spaceborne Doppler wind lidar (DWL) instrument would provide. The model or data assimilation system ideally would need information about both components of the horizontal wind vectors, whereas the observations in this case would provide only the projection of the wind vector onto a given direction. The estimated or analyzed value is then calculated essentially as a weighted average of the observation itself and the model-simulated value of the observed quantity. To assess the expected impact of a DWL, it is important to examine the extent to which a meteorological analysis can be constrained by the LOS winds. The answer to this question depends on the fundamental character of the atmospheric flow fields that are analyzed, but, just as important, it also depends on the real and assumed error covariance characteristics of these fields. A single-level wind analysis system designed to explore these issues has been built at the NASA Data Assimilation Office. In this system, simulated wind observations can be evaluated in terms of their impact on the analysis quality under various assumptions about their spatial distribution and error characteristics and about the error covariance of the background fields. The basic design of the system and experimental results obtained with it are presented. The experiments were designed to illustrate how such a system may be used in the instrument concept definition phase.


2016 ◽  
Vol 38 ◽  
pp. 190
Author(s):  
Regis Sperotto de Quadros ◽  
Fabrício Pereira Harter ◽  
Daniela Buske ◽  
Larri Silveira Pereira

Data Assimilation is a procedure to get the initial condition as accurately as possible, through the statistical combination of collected observations and a background field, usually a short-range forecast. In this research a complete assimilation system for the Lorenz equations based on Ensemble Kalman Filter is presented and examined. The Lorenz model is chosen for its simplicity in structure and the dynamic similarities with primitive equations models, such as modern numerical weather forecasting. Based on results, was concluded that, in this implementation, 10 members is the best setting, because there is an overfitting for ensembles with 50 and 100 members. It was also examined if the EnKF is effective to track the control for 20% and 40% of error in the initial conditions. The results show a disagreement between the “truth” and the estimation, especially in the end of integration period, due the chaotic nature of the system.  It was also concluded that EnKF have to be performed sufficiently frequently in order to produce desirable results.


2011 ◽  
Vol 21 (3) ◽  
pp. 277
Author(s):  
Phan Hong Lien

The effective action and background field method have been applied to investigate free energy density for non-Abelian gauge theory at finite temperature, in which quantum corrections are included and certain symmetries of generating functional are restored. Renormalization is also considered for the gauge field. We give result for the one loop free energy density of gauge theory at high temperature and non-zero chemical potential, correcting a result previously at zero temperature and density. Some results are extended up to two loops


Sign in / Sign up

Export Citation Format

Share Document