scholarly journals Performance Evaluation of a Nowcasting Modelling Chain Operatively Employed in Very Small Catchments in the Mediterranean Environment for Civil Protection Purposes

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 783
Author(s):  
Martina Raffellini ◽  
Federica Martina ◽  
Francesco Silvestro ◽  
Francesca Giannoni ◽  
Nicola Rebora

The Hydro-Meteorological Centre (CMI) of the Environmental Protection Agency of Liguria Region, Italy, is in charge of the hydrometeorological forecast and the in-event monitoring for the region. This region counts numerous small and very small basins, known for their high sensitivity to intense storm events, characterised by low predictability. Therefore, at the CMI, a radar-based nowcasting modelling chain called the Small Basins Model Chain, tailored to such basins, is employed as a monitoring tool for civil protection purposes. The aim of this study is to evaluate the performance of this model chain, in terms of: (1) correct forecast, false alarm and missed alarm rates, based on both observed and simulated discharge threshold exceedances and observed impacts of rainfall events encountered in the region; (2) warning times respect to discharge threshold exceedances. The Small Basins Model Chain is proven to be an effective tool for flood nowcasting and helpful for civil protection operators during the monitoring phase of hydrometeorological events, detecting with good accuracy the location of intense storms, thanks to the radar technology, and the occurrence of flash floods.

2021 ◽  
Vol 13 (13) ◽  
pp. 7189
Author(s):  
Beniamino Russo ◽  
Manuel Gómez Valentín ◽  
Jackson Tellez-Álvarez

Urban drainage networks should be designed and operated preferably under open channel flow conditions without flux return, backwater, or overflows. In the case of extreme storm events, urban pluvial flooding is generated by the excess of surface runoff that could not be conveyed by pressurized sewer pipes, due to its limited capacity or, many times, due to the poor efficiency of surface drainage systems to collect uncontrolled overland flow. Generally, the hydraulic design of sewer systems is addressed more for underground networks, neglecting the surface drainage system, although inadequate inlet spacings and locations can cause dangerous flooding with relevant socio-economic impacts and the interruption of critical services and urban activities. Several experimental and numerical studies carried out at the Technical University of Catalonia (UPC) and other research institutions demonstrated that the hydraulic efficiency of inlets can be very low under critical conditions (e.g., high circulating overland flow on steep areas). In these cases, the hydraulic efficiency of conventional grated inlets and continuous transverse elements can be around 10–20%. Their hydraulic capacity, expressed in terms of discharge coefficients, shows the same criticism with values quite far from those that are usually used in several project practice phases. The grate clogging phenomenon and more intense storm events produced by climate change could further reduce the inlets’ performance. In this context, in order to improve the flood urban resilience of our cities, the relevance of the hydraulic behavior of surface drainage systems is clear.


2014 ◽  
Vol 18 (11) ◽  
pp. 4423-4435 ◽  
Author(s):  
M. Huebsch ◽  
O. Fenton ◽  
B. Horan ◽  
D. Hennessy ◽  
K. G. Richards ◽  
...  

Abstract. Nitrate (NO3−) contamination of groundwater associated with agronomic activity is of major concern in many countries. Where agriculture, thin free draining soils and karst aquifers coincide, groundwater is highly vulnerable to nitrate contamination. As residence times and denitrification potential in such systems are typically low, nitrate can discharge to surface waters unabated. However, such systems also react quickest to agricultural management changes that aim to improve water quality. In response to storm events, nitrate concentrations can alter significantly, i.e. rapidly decreasing or increasing concentrations. The current study examines the response of a specific karst spring situated on a grassland farm in South Ireland to rainfall events utilising high-resolution nitrate and discharge data together with on-farm borehole groundwater fluctuation data. Specifically, the objectives of the study are to formulate a scientific hypothesis of possible scenarios relating to nitrate responses during storm events, and to verify this hypothesis using additional case studies from the literature. This elucidates the controlling key factors that lead to mobilisation and/or dilution of nitrate concentrations during storm events. These were land use, hydrological condition and karstification, which in combination can lead to differential responses of mobilised and/or diluted nitrate concentrations. Furthermore, the results indicate that nitrate response in karst is strongly dependent on nutrient source, whether mobilisation and/or dilution occur and on the pathway taken. This will have consequences for the delivery of nitrate to a surface water receptor. The current study improves our understanding of nitrate responses in karst systems and therefore can guide environmental modellers, policy makers and drinking water managers with respect to the regulations of the European Union (EU) Water Framework Directive (WFD). In future, more research should focus on the high-resolution monitoring of karst aquifers to capture the high variability of hydrochemical processes, which occur at time intervals of hours to days.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2231
Author(s):  
Meiyan Feng ◽  
Kwansue Jung ◽  
Fengping Li ◽  
Hongyan Li ◽  
Joo-Cheol Kim

Low Impact Development (LID) is one of the sustainable approaches to urban stormwater management in areas with rapid urbanization. Although LID has been shown to have a positive effect in flood reduction, the hydrological balance regulation effect of LID under a variety of rainfall events is not fully understood. In this study, we assessed the hydrological efficiency of LID at two residential–commercial mixed sites in Korea to investigate the main function of LID in terms of diverse rainfall characteristics. Storm Water Management Model (SWMM) was constructed to simulate the hydrological process numerical simulations in the pre-development, post-development and LID design scenarios, respectively. The model was calibrated and validated by using five observed rainfall–runoff events. Then, four single and four multiple LID practices (LIDs) were used to estimate their effectiveness under seven different designed rainfall events. The results indicate that LIDs substantially influence the hydrology cycle system, while the regulating effect varies with rainfall amounts. The efficiency of LIDs in flood reduction is proved to be more effective during lower storm events. However, LIDs should be designed to primarily prioritize the restoration of hydrological balance when the rainfall return period is longer.


2021 ◽  
Vol 9 ◽  
Author(s):  
David Brankovits ◽  
Shawna N. Little ◽  
Tyler S. Winkler ◽  
Anne E. Tamalavage ◽  
Luis M. Mejía-Ortíz ◽  
...  

Subsurface mixing of seawater and terrestrial-borne meteoric waters on carbonate landscapes creates karst subterranean estuaries, an area of the coastal aquifer with poorly understood carbon cycling, ecosystem functioning, and impact on submarine groundwater discharge. Caves in karst platforms facilitate water and material exchange between the marine and terrestrial environments, and their internal sedimentation patterns document long-term environmental change. Sediment records from a flooded coastal cave in Cozumel Island (Mexico) document decreasing terrestrial organic matter (OM) deposition within the karst subterranean estuary over the last ∼1,000 years, with older sediment likely exported out of the cave by intense storm events. While stable carbon isotopic values (δ13Corg ranging from −22.5 to −27.1‰) and C:N ratios (ranging from 9.9 to 18.9) indicate that mangrove and other terrestrial detritus surrounding an inland sinkhole are the primarily sedimentary OM supply, an upcore decrease in bulk OM and enrichment of δ13Corg values are observed. These patterns suggest that a reduction in the local mangrove habitat decreased the terrestrial particulate OM input to the cave over time. The benthic foraminiferal community in basal core sediment have higher proportions of infaunal taxa (i.e., Bolivina) and Ammonia, and assemblages shift to increased miliolids and less infaunal taxa at the core-top sediment. The combined results suggest that a decrease in terrestrial OM through time had a concomitant impact on benthic meiofaunal habitats, potentially by impacting dissolved oxygen availability at the microhabitat scale or resource partitioning by foraminifera. The evidence presented here indicates that landscape and watershed level changes can impact ecosystem functioning within adjacent subterranean estuaries.


Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 146
Author(s):  
Javier Fernández-Pato ◽  
Pilar García-Navarro

Numerical simulation of flows that consider interaction between overland and drainage networks has become a practical tool to prevent and mitigate flood situations in urban environments, especially when dealing with intense storm events, where the limited capacity of the sewer systems can be a trigger for flooding. Additionally, in order to prevent any kind of pollutant dispersion through the drainage network, it is very interesting to have a certain monitorization or control over the quality of the water that flows in both domains. In this sense, the addition of a pollutant transport component to both surface and sewer hydraulic models would benefit the global analysis of the combined water flow. On the other hand, when considering a realistic large domain with complex topography or streets structure, a fine spatial discretization is mandatory. Hence the number of grid cells is usually very large and, therefore, it is necessary to use parallelization techniques for the calculation, the use of Graphic Processing Units (GPU) being one of the most efficient due to the leveraging of thousands of processors within a single device. In this work, an efficient GPU-based 2D shallow water flow solver (RiverFlow2D-GPU) is fully coupled with EPA’s Storm Water Management Model (SWMM). Both models are able to develop a transient water quality analysis taking into account several pollutants. The coupled model, referred to as RiverFlow2D-GPU UD (Urban Drainge) is applied to three real-world cases, covering the most common hydraulic situations in urban hydrology/hydraulics. A UK Environmental Agency test case is used as model validation, showing a good agreement between RiverFlow2D-GPU UD and the rest of the numerical models considered. The efficiency of the model is proven in two more complex domains, leading to a >100x faster simulations compared with the traditional CPU computation.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1896 ◽  
Author(s):  
Gabriel-Martin ◽  
Sordo-Ward ◽  
Garrote ◽  
García

This paper focuses on proposing the minimum number of storms necessary to derive the extreme flood hydrographs accurately through event-based modelling. To do so, we analyzed the results obtained by coupling a continuous stochastic weather generator (the Advanced WEather GENerator) with a continuous distributed physically-based hydrological model (the TIN-based real-time integrated basin simulator), and by simulating 5000 years of hourly flow at the basin outlet. We modelled the outflows in a basin named Peacheater Creek located in Oklahoma, USA. Afterwards, we separated the independent rainfall events within the 5000 years of hourly weather forcing, and obtained the flood event associated to each storm from the continuous hourly flow. We ranked all the rainfall events within each year according to three criteria: Total depth, maximum intensity, and total duration. Finally, we compared the flood events obtained from the continuous simulation to those considering the N highest storm events per year according to the three criteria and by focusing on four different aspects: Magnitude and recurrence of the maximum annual peak-flow and volume, seasonality of floods, dependence among maximum peak-flows and volumes, and bivariate return periods. The main results are: (a) Considering the five largest total depth storms per year generates the maximum annual peak-flow and volume, with a probability of 94% and 99%, respectively and, for return periods higher than 50 years, the probability increases to 99% in both cases; (b) considering the five largest total depth storms per year the seasonality of flood is reproduced with an error of less than 4% and (c) bivariate properties between the peak-flow and volume are preserved, with an error on the estimation of the copula fitted of less than 2%.


2006 ◽  
Vol 53 (2) ◽  
pp. 33-44 ◽  
Author(s):  
S. Fujii ◽  
M. Moriya ◽  
P. Songprasert ◽  
H. Ihara

A series of runoff surveys was conducted for more than one year in two small catchments of the Kamo River basin (75.4 km2) and the Takano River basin (66.8 km2) in Kyoto, Japan, which adjoin each other, and may have the same precipitation pattern. The investigation consisted of a high-frequency periodic survey, a long-term regular survey and a storm event survey. The survey results were compared with the regional properties of the basins, and the following results were obtained. (1) Pollutant loadings were successfully estimated as two portions of base discharge and storm events discharge from the survey results. (2) Estimated annual loading of the sites was 2.9–4.5, 1.3–1.8, 17–27, 1.3–2.2, 0.076–0.97 t/km2/y, respectively for CODMn, DOC, SS, TN and TP. (3) 52–53% of the whole flow, which was caused by rainfall events, conveyed 81–87, 68–73, 92–95, 64–67, 76–81% of the whole loading, respectively for CODMn, DOC, SS, TN and TP. (4) Differences of regional properties in two basins cause different runoff patterns, but the differences in runoff patterns also depend on the rainfall patterns. In general, a more urbanized basin receives early and strong influence of precipitation on the storm event runoff.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1756 ◽  
Author(s):  
Timothy Fry ◽  
Reed Maxwell

Stormwater represents a complex and dynamic component of the urban water cycle. Hydrologic models have been used to study pre- and post-development hydrology, including green infrastructure. However, many of these models are applied in urban environments with very little formal verification and/or benchmarking. Here we present the results of an intercomparison study between a distributed model (Gridded Surface Subsurface Hydrologic Analysis, GSSHA) and a lumped parameter model (the US Environmental Protection Agency (EPA) Storm Water Management Model, EPA-SWMM) for an urban system. The distributed model scales to higher resolutions, allows for rainfall to be spatially and temporally variable, and solves the shallow water equations. The lumped model uses a non-linear reservoir method to determine runoff rates and volumes. Each model accounts for infiltration, initial abstraction losses, but solves the watershed flow equations in a different way. We use an urban case study with representation of green infrastructure to test the behavior of both models. Results from this case study show that when calibrated, the lumped model is able to represent green infrastructure for small storm events at lower implementation levels. However, as both storm intensity and amount of green infrastructure implementation increase, the lumped model diverges from the distributed model, overpredicting the benefits of green infrastructure on the system. We performed benchmark test cases to evaluate and understand key processes within each model. The results show similarities between the models for the standard cases for simple infiltration. However, as the domain increased in complexity the lumped model diverged from the distributed model. This indicates differences in how the models represent the physical processes and numerical solution approaches used between each. When the distributed model results were used to modify the representation of impermeable surface connections within the lumped model, the results were improved. These results demonstrate how complex, distributed models can be used to improve the formulation of lumped models.


2000 ◽  
Vol 663 ◽  
Author(s):  
M. K. Silva ◽  
V. M. Oversby

ABSTRACTThe Waste Isolation Pilot Plant (WIPP) is located at a depth of 655 m in bedded salt at a site about 40 km east of Carlsbad, New Mexico.The 1996 U. S. Department of Energy (DOE) application for certification by the U. S. Environmental Protection Agency (EPA) included results of a performance assessment (PA) for the planned repository.After the EPA certified the facility in May, 1998, emplacement of contact handled transuranic waste (CHTRU) began in March, 1999.The WIPP facility must undergo a recertification by EPA every 5 years to demonstrate compliance with disposal regulations.Performance assessment is expected to be a key part of the recertification process.The PA will include probabilistic calculations to predict the release of actinides to the accessible environment over a 10,000 year period using a variety of plausible scenarios.The 1996 PA used a model for Pu(IV) solubility based on Th data and the assumption of analogous behavior for all actinides in the (IV) oxidation state.That model did not allow for mobility between the various possible oxidation states of Pu.The possible effects of increases in solubility of Pu through complexation with organic ligands was also not included in the PA because it was argued by DOE that such complexation would be insignificant. Subsequent data from tests using actual TRU wastes show strong evidence that the importance of organic ligands and the potential for multiple oxidation states must be carefully considered in estimating the expected solution concentrations of Pu in WIPP brines.This paper reviews the present state of knowledge of the behavior of Pu-containing wastes in contact with brines similar to those expected to be important for the WIPP repository, recent advances in understanding of the nature of Pu-oxide phases, and analytical methods that have high sensitivity for Pu speciation. A conceptual model for Pu in TRU wastes is presented and a series of steps - including experiments and calculations - that could led to an improved basis for the PA calculations to be done during the WIPP recertification process is outlined.


2020 ◽  
Vol 17 (01) ◽  
Author(s):  
Gwendolyn E Gallagher ◽  
Ryan K Duncombe ◽  
Timothy M Steeves

Over the past decade, both the average rainfall and the frequency of high precipitation storm events in the Great Lakes Basin have been steadily increasing as a consequence of climate change. In this same period, cities and communities along the coasts are experiencing record high water levels and severe flooding events (ECC Canada et al. 2018). When cities are unprepared for these floods, the safety of communities and the water quality of the Great Lakes are jeopardized. For example, coastal flooding increases runoff pollution and contaminates the freshwater resource that 40 million people rely on for drinking water (Lyandres and Welch 2012, Roth 2016). Since the Great Lakes are shared between two nations, the United States and Canada, the region is protected by several international treaties and national compacts, including the Great Lakes Water Quality Agreement (GLWQA) and the Great Lakes Restoration Initiative (GLRI). In order to increase climate change resiliency against flooding in the region, we recommend the United States Environmental Protection Agency (EPA) work with Environment and Climate Change Canada to relocate the GLRI under the GLWQA in order to guarantee consistent funding and protection efforts. We additionally recommend expansion of both agreements in their scope and long-term commitments to engender cooperative efforts to protect the Great Lakes against climate change.


Sign in / Sign up

Export Citation Format

Share Document