scholarly journals Eyjafjallajökull Volcanic Ash 2010 Effects on GPS Positioning Performance in the Adriatic Sea Region

Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 47
Author(s):  
Maria Mehmood ◽  
Sajid Saleem ◽  
Renato Filjar

The Eyjafjallajökull volcanic ash crisis in 2010 temporarily suspended European air traffic operations, as the 39-day eruption caused widely dispersed ashes to enter the lower atmosphere. In this paper, we assessed the effects of this event on the ionosphere layer and, consequently, on GPS positioning. We collected and analysed the data from four IGS stations, nearest to the volcano, for the month of April 2010. We recorded Vertical Total Electron Content (VTEC) time series, analysed their dynamics, and compared them with the GPS positioning errors of a commercial-grade, un-aided, single-frequency GPS receiver (simulating the response of a mass-market GPS receiver). The geomagnetic indices during the time period show little geomagnetic disturbance, especially during the volcanic event. Our results show an enhancement in ionosphere error by up to 15% during the volcanic ash event and an enhanced variance in GPS position components errors. This study reveals the potential impact of the charged volcanic ash on single-frequency, unaided GPS positioning accuracy in the Adriatic Sea region and establishes a foundation for studying similar events in future.

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1138 ◽  
Author(s):  
Liang Zhang ◽  
Yibin Yao ◽  
Wenjie Peng ◽  
Lulu Shan ◽  
Yulin He ◽  
...  

The prevalence of real-time, low-cost, single-frequency, decimeter-level positioning has increased with the development of global navigation satellite systems (GNSSs). Ionospheric delay accounts for most errors in real-time single-frequency GNSS positioning. To eliminate ionospheric interference in real-time single-frequency precise point positioning (RT-SF-PPP), global ionospheric vertical total electron content (VTEC) product is designed in the next stage of the International GNSS Service (IGS) real-time service (RTS). In this study, real-time generation of a global ionospheric map (GIM) based on IGS RTS is proposed and assessed. There are three crucial steps in the process of generating a real-time global ionospheric map (RTGIM): estimating station differential code bias (DCB) using the precise point positioning (PPP) method, deriving slant total electron content (STEC) from PPP with raw observations, and modeling global vertical total electron content (VTEC). Experiments were carried out to validate the algorithm’s effectiveness. First, one month’s data from 16 globally distributed IGS stations were used to validate the performance of DCB estimation with the PPP method. Second, 30 IGS stations were used to verify the accuracy of static PPP with raw observations. Third, the modeling of residuals was assessed in high and quiet ionospheric activity periods. Afterwards, the quality of RTGIM products was assessed from two aspects: (1) comparison with the Center for Orbit Determination in Europe (CODE) global ionospheric map (GIM) products and (2) determination of the performance of RT-SF-PPP with the RTGIM. Experimental results show that DCB estimation using the PPP method can realize an average accuracy of 0.2 ns; static PPP with raw observations can achieve an accuracy of 0.7, 1.2, and 2.1 cm in the north, east, and up components, respectively. The average standard deviations (STDs) of the model residuals are 2.07 and 2.17 TEC units (TECU) for moderate and high ionospheric activity periods. Moreover, the average root-mean-square (RMS) error of RTGIM products is 2.4 TECU for the one-month moderate ionospheric period. Nevertheless, for the high ionospheric period, the RMS is greater than the RMS in the moderate period. A sub-meter-level horizontal accuracy and meter-level vertical accuracy can be achieved when the RTGIM is employed in RT-SF-PPP.


2013 ◽  
Vol 31 (9) ◽  
pp. 1549-1558 ◽  
Author(s):  
S. Kumar ◽  
A. K. Singh ◽  
R. P. Singh

Abstract. The variability of ionospheric response to the total solar eclipse of 22 July 2009 has been studied analyzing the GPS data recorded at the four Indian low-latitude stations Varanasi (100% obscuration), Kanpur (95% obscuration), Hyderabad (84% obscuration) and Bangalore (72% obscuration). The retrieved ionospheric vertical total electron content (VTEC) shows a significant reduction (reflected by all PRNs (satellites) at all stations) with a maximum of 48% at Varanasi (PRN 14), which decreases to 30% at Bangalore (PRN 14). Data from PRN 31 show a maximum of 54% at Kanpur and 26% at Hyderabad. The maximum decrement in VTEC occurs some time (2–15 min) after the maximum obscuration. The reduction in VTEC compared to the quiet mean VTEC depends on latitude as well as longitude, which also depends on the location of the satellite with respect to the solar eclipse path. The amount of reduction in VTEC decreases as the present obscuration decreases, which is directly related to the electron production by the photoionization process. The analysis of electron density height profile derived from the COSMIC (Constellation Observing System for Meteorology, Ionosphere & Climate) satellite over the Indian region shows significant reduction from 100 km altitude up to 800 km altitude with a maximum of 48% at 360 km altitude. The oscillatory nature in total electron content data at all stations is observed with different wave periods lying between 40 and 120 min, which are attributed to gravity wave effects generated in the lower atmosphere during the total solar eclipse.


2020 ◽  
Vol 12 (20) ◽  
pp. 3354
Author(s):  
Yang Wang ◽  
Yibin Yao ◽  
Liang Zhang ◽  
Mingshan Fang

Ionospheric delay is a crucial error source and determines the source of single-frequency precise point positioning (SF-PPP) accuracy. To meet the demands of real-time SF-PPP (RT-SF-PPP), several international global navigation satellite systems (GNSS) service (IGS) analysis centers provide real-time global ionospheric vertical total electron content (VTEC) products. However, the accuracy distribution of VTEC products is nonuniform. Proposing a refinement method is a convenient means to obtain a more accuracy and consistent VTEC product. In this study, we proposed a refinement method of a real-time ionospheric VTEC model for China and carried out experiments to validate the model effectiveness. First, based on the refinement method and the Centre National d’Études Spatiales (CNES) VTEC products, three refined real-time global ionospheric models (RRTGIMs) with one, three, and six stations in China were built via GNSS observations. Second, the slant total electron content (STEC) and Jason-3 VTEC were used as references to evaluate VTEC accuracy. Third, RT-SF-PPP was used to evaluate the accuracy in the positioning domain. Results showed that even if using only one station to refine the global ionospheric model, the refined model achieved a better performance than CNES and the Center for Orbit Determination in Europe (CODE). The refinement model with six stations was found to be the best of the three refinement models.


2020 ◽  
Author(s):  
Artur Fischer ◽  
Sławomir Cellmer ◽  
Krzysztof Nowel

Abstract. This paper proposes a new mathematical method of ionospheric delay estimation in single point positioning (SPP) using a single-frequency receiver. The proposed approach focuses on the ΔVTEC component estimation (MSPPwithdVTEC) with the assumption of an initial and constant value equal to 5 in any observed epoch. The principal purpose of the study is to examine the reliability of this approach to become independent from the external data in the ionospheric correction calculation process. To verify the MSPPwithdVTEC, the SPP with the Klobuchar algorithm was employed as a reference model, utilizing the coefficients from the navigation message. Moreover, to specify the level of precision of the MSPPwithdVTEC, the SPP with the IGS TEC map was adopted for comparison as the high-quality product in the ionospheric delay determination. To perform the computational tests, real code data was involved from three different localizations in Scandinavia using two parallel days. The criterion were the ionospheric changes depending on geodetic latitude. Referring to the Klobuchar model, the MSPPwithdVTEC obtained a significant improvement of 15–25 % in the final SPP solutions. For the SPP approach employing the IGS TEC map and for the MSPPwithdVTEC, the difference in error reduction was not significant, and it did not exceed 1.0 % for the IGS TEC map. Therefore, the MSPPwithdVTEC can be assessed as an accurate SPP method based on error reduction value, close to the SPP approach with the IGS TEC map. The main advantage of the proposed approach is that it does not need external data.


2018 ◽  
Vol 12 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Mohamed Abdelazeem ◽  
Rahmi N. Çelik ◽  
Ahmed El-Rabbany

AbstractIn this study, we propose a regional ionospheric model (RIM) based on both of the GPS-only and the combined GPS/BeiDou observations for single-frequency precise point positioning (SF-PPP) users in Europe. GPS/BeiDou observations from 16 reference stations are processed in the zero-difference mode. A least-squares algorithm is developed to determine the vertical total electron content (VTEC) bi-linear function parameters for a 15-minute time interval. The Kriging interpolation method is used to estimate the VTEC values at a 1 ° × 1 ° grid. The resulting RIMs are validated for PPP applications using GNSS observations from another set of stations. The SF-PPP accuracy and convergence time obtained through the proposed RIMs are computed and compared with those obtained through the international GNSS service global ionospheric maps (IGS-GIM). The results show that the RIMs speed up the convergence time and enhance the overall positioning accuracy in comparison with the IGS-GIM model, particularly the combined GPS/BeiDou-based model.


2020 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Uluma Edward ◽  
Ndinya Boniface ◽  
Omondi George

Total Electron Content (TEC) depletion and amplitude scintillation (S4) can be derived from, SCINDA-GPS receivers situated in various parts of the equatorial region. In this paper we present results of characterization of TEC depletions and amplitude scintillations over Kisumu, Kenya (Geomagnetic coordinates: 9.64o S, 108.59o E; Geographic coordinates: 0.02o S, 34.6o E) for both selected geomagnetically quiet and geomagnetically disturbed conditions between 1st January 2013 and 31st December 2014 using data derived from the Kisumu NovAtel GSV4004B SCINDA-GPS receiver situated at Maseno University. TEC depletions and amplitude scintillations affect Global Positioning System (GPS) signals in the ionosphere as they propagate from the satellite to the receiver. This study aims to investigate day to day variability of TEC depletions and amplitude scintillations over Kisumu, Kenya during both geomagnetically quiet and geomagnetically disturbed days of 2013 and 2014 which was a high solar activity period for Solar Cycle 24. Seasonal variability of TEC depletions and S4 index is also presented. The Receiver Independent Exchange (RINEX) data for the years 2013 and 2014 was retrieved from the Kisumu SCINDA-GPS receiver, processed to obtain Vertical Total Electron Content (VTEC), S4 and Universal Time (UT) and fed into MATLAB to generate VTEC and S4 plots against UT for each selected quiet and storm day within the 2013 and 2014 period. The obtained results showed a diurnal variation of TEC where TEC was minimum at pre-sunrise, maximum during daytime and minimum during nighttime. The minimum TEC during pre-sunrise and nighttime was attributed to reduced solar intensity while maximum TEC during daytime is attributed to increased solar intensity. Most of the selected quiet and storm days of the years 2013 and 2014 showed TEC depletions and TEC enhancements corresponding with enhanced amplitude scintillations between 1800UT and 20:00UT. This might be attributed to the rapid rise of the F-layer and the increase in the vertical E x B plasma drift due to the Pre-reversal Enhancement (PRE) of the eastward electric field. Post-midnight TEC depletions and amplitude scintillations were observed for some days and this was attributed to the effect of zonal winds which brought post-midnight enhancement of the E x B drift. The percentage occurrence of amplitude scintillations for the selected quiet and storm days exhibited a seasonal dependence with equinoctial months having higher occurrences than the solstitial months. The higher average S4 index during equinoctial months might be attributed to increased solar intensity resulting from the close alignment of the solar terminator and the geomagnetic meridian.  


2016 ◽  
Vol 10 (4) ◽  
Author(s):  
Sampad K. Panda ◽  
Shirish S. Gedam

AbstractThe present paper investigates accuracy of single and dual-frequency Global Positioning System (GPS) standard point positioning solutions employing different ionosphere error mitigation techniques. The total electron content (TEC) in the ionosphere is the prominent delay error source in GPS positioning, and its elimination is essential for obtaining a relatively precise positioning solution. The estimated delay error from different ionosphere models and maps, such as Klobuchar model, global ionosphere models, and vertical TEC maps are compared with the locally derived ionosphere error following the ion density and frequency dependence with delay error. Finally, the positional accuracy of the single and dual-frequency GPS point positioning solutions are probed through different ionospheric mitigation methods including exploitation of models, maps, and ionosphere-free linear combinations and removal of higher order ionospheric effects. The results suggest the superiority of global ionosphere maps for single-frequency solution, whereas for the dual-frequency measurement the ionosphere-free linear combination with prior removal of higher-order ionosphere effects from global ionosphere maps and geomagnetic reference fields resulted in improved positioning quality among the chosen mitigation techniques. Conspicuously, the susceptibility of height component to different ionospheric mitigation methods are demonstrated in this study which may assist the users in selecting appropriate technique for precise GPS positioning measurements.


Sign in / Sign up

Export Citation Format

Share Document