scholarly journals Female Mice Are Protected from Metabolic Decline Associated with Lack of Skeletal Muscle HuR

Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 543
Author(s):  
Allison C. Stone ◽  
Robert C. Noland ◽  
Randall L. Mynatt ◽  
Samuel E. Velasquez ◽  
David S. Bayless ◽  
...  

Male mice lacking HuR in skeletal muscle (HuRm−/−) have been shown to have decreased gastrocnemius lipid oxidation and increased adiposity and insulin resistance. The same consequences have not been documented in female HuRm−/− mice. Here we examine this sexually dimorphic phenotype. HuRm−/− mice have an increased fat mass to lean mass ratio (FM/LM) relative to controls where food intake is similar. Increased body weight for male mice correlates with increased blood glucose during glucose tolerance tests (GTT), suggesting increased fat mass in male HuRm−/− mice as a driver of decreased glucose clearance. However, HuRm−/− female mice show decreased blood glucose levels during GTT relative to controls. HuRm−/− mice display decreased palmitate oxidation in skeletal muscle relative to controls. This difference is more robust for male HuRm−/− mice and more exaggerated for both sexes at high dietary fat. A high-fat diet stimulates expression of Pgc1α in HuRm−/− male skeletal muscle, but not in females. However, the lipid oxidation Pparα pathway remains decreased in HuRm−/− male mice relative to controls regardless of diet. This pathway is only decreased in female HuRm−/− mice fed high fat diet. A decreased capacity for lipid oxidation in skeletal muscle in the absence of HuR may thus be linked to decreased glucose clearance in male but not female mice.

2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Hye-Won Yang ◽  
Myeongjoo Son ◽  
Junwon Choi ◽  
Seyeon Oh ◽  
You-Jin Jeon ◽  
...  

Abstract Brown alga (Ishige okamurae; IO) dietary supplements have been reported to possess anti-diabetic properties. However, the effects of IO supplements have not been evaluated on glucose metabolism in the pancreas and skeletal muscle. C57BL/6 N male mice (age, 7 weeks) were arranged in five groups: a chow diet with 0.9% saline (NFD/saline group), high-fat diet (HFD) with 0.9% saline (HFD/saline group). high-fat diet with 25 mg/kg IO extract (HFD/25/IOE). high-fat diet with 50 mg/kg IO extract (HFD/50/IOE), and high-fat diet with 75 mg/kg IO extract (HFD/75/IOE). After 4 weeks, the plasma, pancreas, and skeletal muscle samples were collected for biochemical analyses. IOE significantly ameliorated glucose tolerance impairment and fasting and 2 h blood glucose level in HFD mice. IOE also stimulated the protein expressions of the glucose transporters (GLUTs) including GLUT2 and GLUT4 and those of their related transcription factors in the pancreases and skeletal muscles of HFD mice, enhanced glucose metabolism, and regulated blood glucose level. Our results suggest Ishige okamurae extract may reduce blood glucose levels by improving glucose metabolism in the pancreas and skeletal muscle in HFD-induced diabetes.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A806-A806
Author(s):  
Rachel Bell ◽  
Elisa Villalobos ◽  
Mark Nixon ◽  
Allende Miguelez-Crespo ◽  
Matthew Sharp ◽  
...  

Abstract Glucocorticoids play a critical role in metabolic homeostasis. Chronic or excessive activation of the glucocorticoid receptor (GR) in adipose tissue contributes to metabolic disorders such as glucose intolerance and insulin resistance. Steroid-metabolising enzymes in adipose, such as 11β-HSD1 or 5α-reductase, modulate the activation of GR by converting primary glucocorticoids into more or less potent ligands. Carbonyl reductase 1 (CBR1) is a novel regulator of glucocorticoid metabolism, converting corticosterone/cortisol to 20β-dihydrocorticosterone/cortisol (20β-DHB/F); a metabolite which retains GR activity. CBR1 is abundant in adipose tissue and increased in obese adipose of mice and humans1 and increased Cbr1 expression is associated with increased fasting glucose1. We hypothesised that increased Cbr1/20β-DHB in obese adipose contributes to excessive GR activation and worsens glucose tolerance. We generated a novel murine model of adipose-specific Cbr1 over-expression (R26-Cbr1Adpq) by crossing conditional knock-in mice with Adiponectin-Cre mice. CBR1 protein and activity were doubled in subcutaneous adipose tissue of male and female R26-Cbr1Adpq mice compared with floxed controls; corresponding to a two-fold increase 20β-DHB (1.6 vs. 4.2ng/g adipose; P=0.0003; n=5-7/group). There were no differences in plasma 20β-DHB or corticosterone. Bodyweight, lean or fat mass, did not differ between male or female R26-Cbr1Adpq mice and floxed controls. Lean male R26-Cbr1Adpq mice had higher fasting glucose (9.5±0.3 vs. 8.4±0.3mmol/L; P=0.04) and worsened glucose tolerance (AUC 1819±66 vs. 1392±14; P=0.03). Female R26-Cbr1Adpq mice also had a worsened glucose tolerance but fasting glucose was not altered with genotype. There were no differences in fasting insulin or non-esterified fatty acid between genotypes in either sex. Expression of GR-induced genes Pnpla2, Gilz and Per1, were increased in adipose of R26-Cbr1Adpq mice. Following high-fat diet induced obesity, no differences in bodyweight, lean or fat mass, with genotype were observed in male and female mice, and genotype differences in fasting glucose and glucose tolerance were abolished. In conclusion, adipose-specific over-expression of Cbr1 in lean male and female mice led to increased levels of 20β-DHB in adipose but not plasma, and both sexes having worsened glucose tolerance. The influence of adipose CBR1/20β-DHB on glucose tolerance was not associated with altered fat mass or bodyweight and was attenuated by high-fat diet-induced obesity. These metabolic consequences of Cbr1 manipulation require careful consideration given the wide variation in CBR1 expression in the human population, the presence of inhibitors and enhancers in many foodstuffs and the proposed use of inhibitors as an adjunct for cancer treatment regimens. Reference: Morgan et al., Scientific Reports. 2017; 7.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kazushige Ota ◽  
Akiyoshi Komuro ◽  
Hisayuki Amano ◽  
Akinori Kanai ◽  
Kai Ge ◽  
...  

2011 ◽  
Vol 96 (3) ◽  
pp. 775-781 ◽  
Author(s):  
K. E. Boyle ◽  
J. P. Canham ◽  
L. A. Consitt ◽  
D. Zheng ◽  
T. R. Koves ◽  
...  

Context: In lean individuals, increasing dietary lipid can elicit an increase in whole body lipid oxidation; however, with obesity the capacity to respond to changes in substrate availability appears to be compromised. Objective: To determine whether the responses of genes regulating lipid oxidation in skeletal muscle differed between lean and insulin resistant obese humans upon exposure to a high-fat diet (HFD). Design and Setting: A 5-d prospective study conducted in the research unit of an academic center. Participants: Healthy, lean (n = 12; body mass index = 22.1 ± 0.6 kg/m2), and obese (n=10; body mass index = 39.6 ± 1.7 kg/m2) males and females, between ages 18 and 30. Intervention: Participants were studied before and after a 5-d HFD (65% fat). Main Outcome Measures: Skeletal muscle biopsies (vastus lateralis) were obtained in the fasted and fed states before and after the HFD and mRNA content for genes involved with lipid oxidation determined. Skeletal muscle acylcarnitine content was determined in the fed states before and after the HFD. Results: Peroxisome proliferator activated receptor (PPAR) α mRNA content increased in lean, but not obese, subjects after a single high-fat meal. From Pre- to Post-HFD, mRNA content exhibited a body size × HFD interaction, where the lean individuals increased while the obese individuals decreased mRNA content for pyruvate dehydrogenase kinase 4, uncoupling protein 3, PPARα, and PPARγ coactivator-1α (P ≤ 0.05). In the obese subjects medium-chain acylcarnitine species tended to accumulate, whereas no change or a reduction was evident in the lean individuals. Conclusions: These findings indicate a differential response to a lipid stimulus in the skeletal muscle of lean and insulin resistant obese humans.


2020 ◽  
Author(s):  
Yao Zhang ◽  
jiao Zhang ◽  
Ming Hong ◽  
Jingyi Huang ◽  
Rui Wang ◽  
...  

Abstract BackgroundOptimization of experimental conditions in streptozotocin induced diabetic model in Sprague Dawley (SD) rats to evaluate the stability of the model.MethodsMale and female SD rats were randomly divided into control group, STZ 45 group (STZ: 45 mg / kg), STZ 65 group (STZ: 65 mg / kg), STZ 85 group (STZ: 85 mg / kg), high fat diet with STZ 45 group (STZ: 45 mg / kg), high fat diet with STZ 65 group (STZ: 65 mg / kg), high fat diet with STZ 85 group (STZ: 85 mg / kg). N = 6 in each group. The changes of body weight and blood glucose were observed dynamically.ResultsThere was no significant difference in blood glucose or body weight between the STZ 45 group and the control group in both male and female rats, whether or not they were on a high-fat diet. However, there were significant differences in blood glucose between the high-dose STZ group and the control group in both male and female rats, regardless of whether the rats were on a high-fat diet or not (P < 0.05 or P < 0.01). Compared with the control group, there were significant differences in blood glucose levels (P < 0.05 or P < 0.01) and higher blood glucose levels in the male rats fed with the normal diet than that in those fed with the high-fat diet.ConclusionsIn this study, male rats fed with ordinary feed and injected STZ dose of 65 mg / kg were the most stable and ideal diabetic rat.


2017 ◽  
Vol 232 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Dawn E W Livingstone ◽  
Emma M Di Rollo ◽  
Tracy C-S Mak ◽  
Karen Sooy ◽  
Brian R Walker ◽  
...  

5α-Reductases irreversibly catalyse A-ring reduction of pregnene steroids, including glucocorticoids and androgens. Genetic disruption of 5α-reductase 1 in male mice impairs glucocorticoid clearance and predisposes to glucose intolerance and hepatic steatosis upon metabolic challenge. However, it is unclear whether this is driven by changes in androgen and/or glucocorticoid action. Female mice with transgenic disruption of 5α-reductase 1 (5αR1-KO) were studied, representing a ‘low androgen’ state. Glucocorticoid clearance and stress responses were studied in mice aged 6 months. Metabolism was assessed in mice on normal chow (aged 6 and 12 m) and also in a separate cohort following 1-month high-fat diet (aged 3 m). Female 5αR1-KO mice had adrenal suppression (44% lower AUC corticosterone after stress), and upon corticosterone infusion, accumulated hepatic glucocorticoids (~27% increased corticosterone). Female 5αR1-KO mice aged 6 m fed normal chow demonstrated insulin resistance (~35% increased area under curve (AUC) for insulin upon glucose tolerance testing) and hepatic steatosis (~33% increased hepatic triglycerides) compared with controls. This progressed to obesity (~12% increased body weight) and sustained insulin resistance (~38% increased AUC insulin) by age 12 m. Hepatic transcript profiles supported impaired lipid β-oxidation and increased triglyceride storage. Female 5αR1-KO mice were also predisposed to develop high-fat diet-induced insulin resistance. Exaggerated predisposition to metabolic disorders in female mice, compared with that seen in male mice, after disruption of 5αR1 suggests phenotypic changes may be underpinned by altered metabolism of glucocorticoids rather than androgens.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Sumit Bhattacharyya ◽  
Leo Feferman ◽  
Terry Unterman ◽  
Joanne K. Tobacman

Aims. Major aims were to determine whether exposure to the commonly used food additive carrageenan could induce fasting hyperglycemia and could increase the effects of a high fat diet on glucose intolerance and dyslipidemia.Methods. C57BL/6J mice were exposed to either carrageenan, high fat diet, or the combination of high fat diet and carrageenan, or untreated, for one year. Effects on fasting blood glucose, glucose tolerance, lipid parameters, weight, glycogen stores, and inflammation were compared.Results. Exposure to carrageenan led to glucose intolerance by six days and produced elevated fasting blood glucose by 23 weeks. Effects of carrageenan on glucose tolerance were more severe than from high fat alone. Carrageenan in combination with high fat produced earlier onset of fasting hyperglycemia and higher glucose levels in glucose tolerance tests and exacerbated dyslipidemia. In contrast to high fat, carrageenan did not lead to weight gain. In hyperinsulinemic, euglycemic clamp studies, the carrageenan-exposed mice had higher early glucose levels and lower glucose infusion rate and longer interval to achieve the steady-state.Conclusions. Carrageenan in the Western diet may contribute to the development of diabetes and the effects of high fat consumption. Carrageenan may be useful as a nonobese model of diabetes in the mouse.


2012 ◽  
Vol 48 (3) ◽  
pp. 647-653 ◽  
Author(s):  
Yusuke Sakurai ◽  
Hiroaki Inoue ◽  
Norihito Shintani ◽  
Akihiro Arimori ◽  
Ken-ichi Hamagami ◽  
...  

2008 ◽  
Vol 295 (1) ◽  
pp. E46-E54 ◽  
Author(s):  
Nam Ho Jeoung ◽  
Robert A. Harris

The effect of pyruvate dehydrogenase kinase-4 (PDK4) deficiency on glucose homeostasis was studied in mice fed a high-fat diet. Expression of PDK4 was greatly increased in skeletal muscle and diaphragm but not liver and kidney of wild-type mice fed the high-fat diet. Wild-type and PDK4−/− mice consumed similar amounts of the diet and became equally obese. Insulin resistance developed in both groups. Nevertheless, fasting blood glucose levels were lower, glucose tolerance was slightly improved, and insulin sensitivity was slightly greater in the PDK4−/− mice compared with wild-type mice. When the mice were killed in the fed state, the actual activity of the pyruvate dehydrogenase complex (PDC) was higher in the skeletal muscle and diaphragm but not in the liver and kidney of PDK4−/− mice compared with wild-type mice. When the mice were killed after overnight fasting, the actual PDC activity was higher only in the kidney of PDK4−/− mice compared with wild-type mice. The concentrations of gluconeogenic substrates were lower in the blood of PDK4−/− mice compared with wild-type mice, consistent with reduced formation in peripheral tissues. Diaphragms isolated from PDK4−/− mice oxidized glucose faster and fatty acids slower than diaphragms from wild-type mice. Fatty acid oxidation inhibited glucose oxidation by diaphragms from wild-type but not PDK4−/− mice. NEFA, ketone bodies, and branched-chain amino acids were elevated more in PDK4−/− mice, consistent with slower rates of oxidation. These findings show that PDK4 deficiency lowers blood glucose and slightly improves glucose tolerance and insulin sensitivity in mice with diet-induced obesity.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2421-2421
Author(s):  
Constance Tom Noguchi ◽  
Heather Marie Rogers

Erythropoietin (EPO) promotes erythroid differentiation and increases glucose uptake in erythroid progenitor cells in culture. The metabolic burden associated with EPO treatment in adult mice is suggested by a decrease in body weight concomitant with increased hematocrit. Wild type male mice (C57Bl/6, age 8 months) treated with EPO showed the expected increase in hematocrit accompanied by a fall in blood glucose level and a decrease in body weight and fat mass. However, the decrease in body weight is even more evident in obese mice on a high fat diet and has also been linked to non-hematopoietic response, particularly with EPO receptor (EpoR) expression in white adipose tissue. We examined the metabolic burden of EPO treatment (3000U/kg for 3 weeks) in young, lean male mice (3 months) placed on high fat diet at the time of EPO administration. The increase in hematocrit was accompanied by decreased blood glucose level and improved glucose tolerance. However, no difference in body weight was observed between mice treated with EPO and the saline treated group, suggesting that the EPO stimulated decrease in body weight is evident primarily in older animals with greater fat mass. To determine the contribution of EpoR expression in non-hematopoietic tissue to the metabolic EPO response, young male mice with EpoR restricted to erythroid tissue (TgEpoR) were placed on high fat diet and treated with EPO. The expected increased hematocrit was also accompanied by decreased blood glucose level and improved glucose tolerance, and no change in body weight between EPO and saline treatment. The similar responses observed in young wild type and TgEpoR mice suggest that the EPO stimulated increase in glucose metabolism is associated with increased erythropoiesis rather than a direct EPO response in non-hematopoietic tissue. TgEpoR mice exhibit an age dependent increase in fat mass even greater than that observed in wild type mice, and by 8 months TgEpoR mice are obese, glucose intolerant and insulin resistant compared with wild type mice. At 8 months, TgEpoR mice treated with EPO show the increase in hematocrit and, despite the increase in fat mass, there is only a minimal decrease in body weight compared with wild type mice. These data provide evidence that in addition to the age dependent association of EPO stimulated decrease in body weight and fat mass, this decrease in body weight is due largely to EPO response related to EpoR expression in non-hematopoietic tissue. Interestingly, young male mice with targeted deletion of EpoR in adipose tissue placed on a high fat diet and treated with EPO show the increase in hematocrit and improvement in glucose tolerance, and at 8 months, the increase in hematocrit with EPO treatment is accompanied by minimal change in body weight. The similar metabolic response of these mice with targeted deletion of EpoR in adipose tissue to TgEpoR mice indicate the contribution of EpoR expression in adipose tissue to the loss of body weight and fat mass. Therefore, the metabolic burden associated with EPO stimulated erythropoiesis appears to be reflected in improved glucose metabolism and glucose tolerance with minimal or no effect on body weight, is evident in young, lean mice, and is independent of EpoR expression in non-hematopoietic tissue. In older mice, non-hematopoietic metabolic EPO response is more readily apparent as reflected in loss of body weight/fat mass, which overshadows the erythropoietic metabolic response. In combination, the metabolic response to EPO treatment results from EPO stimulated increased erythropoiesis, improved glucose metabolism and glucose tolerance, and an age dependent decrease in body weight and fat mass associated with EpoR expression in non-hematopoietic tissue, particularly in white adipose tissue. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document