scholarly journals Targeted RNA-Seq Reveals the M. tuberculosis Transcriptome from an In Vivo Infection Model

Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 848
Author(s):  
Fernanda Cornejo-Granados ◽  
Gamaliel López-Leal ◽  
Dulce A. Mata-Espinosa ◽  
Jorge Barrios-Payán ◽  
Brenda Marquina-Castillo ◽  
...  

The study of host-pathogen interactions using in vivo models with intracellular pathogens like Mycobacterium tuberculosis (Mtb) entails technical limitations, such as: (i) Selecting an efficient differential lysis system to enrich the pathogen cells; (ii) obtaining sufficient high-quality RNA; and (iii) achieving an efficient rRNA depletion. Thus, some authors had used flow cytometers to separate infected cells or significantly increase the sequencing depth of host–pathogen RNA libraries to observe the pathogens’ gene expression. However, these options carry additional expenses in specialized equipment typically not available for all laboratories. Here, we propose an experimental protocol involving differential cell lysis and a probe-based ribosomal depletion to determine the gene expression of Mtb and its host during in vivo infection. This method increased the number of observed pathogen-expressed genes from 13 using the traditional RNA-seq approach to 702. After eliminating rRNA reads, we observed that 61.59% of Mtb sequences represented 702 genes, while 38.41% represented intergenic regions. Some of the most expressed genes codified for IS1081 (Rv2512c) transposase and eight PE-PGRS members, such as PGRS49 and PGRS50. As expected, a critical percent of the expressed genes codified for secreted proteins essential for infection, such as PE68, lppN, and LpqH. Moreover, three Mtb ncRNAs were highly expressed (small RNA MTS2823, transfer-messenger RNA RF00023, and ribozyme RF00010). Many of the host-expressed genes were related to the inflammation process and the expression of surfactant proteins such as the Sftpa and Sftpc, known to bind Mtb to alveolar macrophages and mi638, a microRNA with no previous associations with pulmonary diseases. The main objective of this study is to present the method, and a general catalog of the Mtb expressed genes at one point of the in vivo infection. We believe our method represents a different approach to the existing ones to study host–pathogen interactions in tuberculosis and other similar intracellular infections, without the necessity of specialized equipment.

Cell Reports ◽  
2020 ◽  
Vol 30 (2) ◽  
pp. 335-350.e4 ◽  
Author(s):  
Davide Pisu ◽  
Lu Huang ◽  
Jennifer K. Grenier ◽  
David G. Russell

Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 387
Author(s):  
Meysam Sarshar ◽  
Payam Behzadi ◽  
Daniela Scribano ◽  
Anna Teresa Palamara ◽  
Cecilia Ambrosi

Acinetobacter baumannii is regarded as a life-threatening pathogen associated with community-acquired and nosocomial infections, mainly pneumonia. The rise in the number of A. baumannii antibiotic-resistant strains reduces effective therapies and increases mortality. Bacterial comparative genomic studies have unraveled the innate and acquired virulence factors of A. baumannii. These virulence factors are involved in antibiotic resistance, environmental persistence, host-pathogen interactions, and immune evasion. Studies on host–pathogen interactions revealed that A. baumannii evolved different mechanisms to adhere to in order to invade host respiratory cells as well as evade the host immune system. In this review, we discuss current data on A. baumannii genetic features and virulence factors. An emphasis is given to the players in host–pathogen interaction in the respiratory tract. In addition, we report recent investigations into host defense systems using in vitro and in vivo models, providing new insights into the innate immune response to A. baumannii infections. Increasing our knowledge of A. baumannii pathogenesis may help the development of novel therapeutic strategies based on anti-adhesive, anti-virulence, and anti-cell to cell signaling pathways drugs.


Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 56
Author(s):  
Parwez Ahmad ◽  
Chaima Bensaoud ◽  
Imen Mekki ◽  
Mujeeb Ur Rehman ◽  
Michail Kotsyfakis

Long non-coding (lnc)RNAs have emerged as critical regulators of gene expression and are involved in almost every cellular process. They can bind to other molecules including DNA, proteins, or even other RNA types such messenger RNA or small RNAs. LncRNAs are typically expressed at much lower levels than mRNA, and their expression is often restricted to tissue- or time-specific developmental stages. They are also involved in several inter-species interactions, including vector–host–pathogen interactions, where they can be either vector/host-derived or encoded by pathogens. In these interactions, they function via multiple mechanisms including regulating pathogen growth and replication or via cell-autonomous antimicrobial defense mechanisms. Recent advances suggest that characterizing lncRNAs and their targets in different species may hold the key to understanding the role of this class of non-coding RNA in interspecies crosstalk. In this review, we present a general overview of recent studies related to lncRNA-related regulation of gene expression as well as their possible involvement in regulating vector–host–pathogen interactions.


2021 ◽  
Vol 22 (5) ◽  
pp. 2746
Author(s):  
Dimitri Shcherbakov ◽  
Reda Juskeviciene ◽  
Adrián Cortés Sanchón ◽  
Margarita Brilkova ◽  
Hubert Rehrauer ◽  
...  

Mitochondrial misreading, conferred by mutation V338Y in mitoribosomal protein Mrps5, in-vivo is associated with a subtle neurological phenotype. Brain mitochondria of homozygous knock-in mutant Mrps5V338Y/V338Y mice show decreased oxygen consumption and reduced ATP levels. Using a combination of unbiased RNA-Seq with untargeted metabolomics, we here demonstrate a concerted response, which alleviates the impaired functionality of OXPHOS complexes in Mrps5 mutant mice. This concerted response mitigates the age-associated decline in mitochondrial gene expression and compensates for impaired respiration by transcriptional upregulation of OXPHOS components together with anaplerotic replenishment of the TCA cycle (pyruvate, 2-ketoglutarate).


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Bjarne Vermeire ◽  
Liara M. Gonzalez ◽  
Robert J. J. Jansens ◽  
Eric Cox ◽  
Bert Devriendt

AbstractSmall intestinal organoids, or enteroids, represent a valuable model to study host–pathogen interactions at the intestinal epithelial surface. Much research has been done on murine and human enteroids, however only a handful studies evaluated the development of enteroids in other species. Porcine enteroid cultures have been described, but little is known about their functional responses to specific pathogens or their associated virulence factors. Here, we report that porcine enteroids respond in a similar manner as in vivo gut tissues to enterotoxins derived from enterotoxigenic Escherichia coli, an enteric pathogen causing postweaning diarrhoea in piglets. Upon enterotoxin stimulation, these enteroids not only display a dysregulated electrolyte and water balance as shown by their swelling, but also secrete inflammation markers. Porcine enteroids grown as a 2D-monolayer supported the adhesion of an F4+ ETEC strain. Hence, these enteroids closely mimic in vivo intestinal epithelial responses to gut pathogens and are a promising model to study host–pathogen interactions in the pig gut. Insights obtained with this model might accelerate the design of veterinary therapeutics aimed at improving gut health.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Emma L Robinson ◽  
Syed Haider ◽  
Hillary Hei ◽  
Richard T Lee ◽  
Roger S Foo

Heart failure comprises of clinically distinct inciting causes but a consistent pattern of change in myocardial gene expression supports the hypothesis that unifying biochemical mechanisms underlie disease progression. The recent RNA-seq revolution has enabled whole transcriptome profiling, using deep-sequencing technologies. Up to 70% of the genome is now known to be transcribed into RNA, a significant proportion of which is long non-coding RNAs (lncRNAs), defined as polyribonucleotides of ≥200 nucleotides. This project aims to discover whether the myocardium expression of lncRNAs changes in the failing heart. Paired end RNA-seq from a 300-400bp library of ‘stretched’ mouse myocyte total RNA was carried out to generate 76-mer sequence reads. Mechanically stretching myocytes with equibiaxial stretch apparatus mimics pathological hypertrophy in the heart. Transcripts were assembled and aligned to reference genome mm9 (UCSC), abundance determined and differential expression of novel transcripts and alternative splice variants were compared with that of control (non-stretched) mouse myocytes. Five novel transcripts have been identified in our RNA-seq that are differentially expressed in stretched myocytes compared with non-stretched. These are regions of the genome that are currently unannotated and potentially are transcribed into non-coding RNAs. Roles of known lncRNAs include control of gene expression, either by direct interaction with complementary regions of the genome or association with chromatin remodelling complexes which act on the epigenome.Changes in expression of genes which contribute to the deterioration of the failing heart could be due to the actions of these novel lncRNAs, immediately suggesting a target for new pharmaceuticals. Changes in the expression of these novel transcripts will be validated in a larger sample size of stretched myocytes vs non-stretched myocytes as well as in the hearts of transverse aortic constriction (TAC) mice vs Sham (surgical procedure without the aortic banding). In vivo investigations will then be carried out, using siLNA antisense technology to silence novel lncRNAs in mice.


2007 ◽  
Vol 292 (2) ◽  
pp. L367-L377 ◽  
Author(s):  
Joost B. Vos ◽  
Nicole A. Datson ◽  
Klaus F. Rabe ◽  
Pieter S. Hiemstra

The epithelial surface of the airways is the largest barrier-forming interface between the human body and the outside world. It is now well recognized that, at this strategic position, airway epithelial cells play an eminent role in host defense by recognizing and responding to microbial exposure. Conversely, inhaled microorganisms also respond to contact with epithelial cells. Our understanding of this cross talk is limited, requiring sophisticated experimental approaches to analyze these complex interactions. High-throughput technologies, such as DNA microarray analysis and serial analysis of gene expression (SAGE), have been developed to screen for gene expression levels at large scale within single experiments. Since their introduction, these hypothesis-generating technologies have been widely used in diverse areas such as oncology and brain research. Successful application of these genomics-based technologies has also revealed novel insights in host-pathogen interactions in both the host and pathogen. This review aims to provide an overview of the SAGE and microarray technology illustrated by their application in the analysis of host-pathogen interactions. In particular, the interactions between epithelial cells in the human lungs and clinically relevant microorganisms are the central focus of this review.


2019 ◽  
Author(s):  
Ugur M. Ayturk ◽  
Joseph P. Scollan ◽  
Alexander Vesprey ◽  
Christina M. Jacobsen ◽  
Paola Divieti Pajevic ◽  
...  

ABSTRACTSingle cell RNA-seq (scRNA-seq) is emerging as a powerful technology to examine transcriptomes of individual cells. We determined whether scRNA-seq could be used to detect the effect of environmental and pharmacologic perturbations on osteoblasts. We began with a commonly used in vitro system in which freshly isolated neonatal mouse calvarial cells are expanded and induced to produce a mineralized matrix. We used scRNA-seq to compare the relative cell type abundances and the transcriptomes of freshly isolated cells to those that had been cultured for 12 days in vitro. We observed that the percentage of macrophage-like cells increased from 6% in freshly isolated calvarial cells to 34% in cultured cells. We also found that Bglap transcripts were abundant in freshly isolated osteoblasts but nearly undetectable in the cultured calvarial cells. Thus, scRNA-seq revealed significant differences between heterogeneity of cells in vivo and in vitro. We next performed scRNA-seq on freshly recovered long bone endocortical cells from mice that received either vehicle or Sclerostin-neutralizing antibody for 1 week. Bone anabolism-associated transcripts were also not significantly increased in immature and mature osteoblasts recovered from Sclerostin-neutralizing antibody treated mice; this is likely a consequence of being underpowered to detect modest changes in gene expression, since only 7% of the sequenced endocortical cells were osteoblasts, and a limited portion of their transcriptomes were sampled. We conclude that scRNA-seq can detect changes in cell abundance, identity, and gene expression in skeletally derived cells. In order to detect modest changes in osteoblast gene expression at the single cell level in the appendicular skeleton, larger numbers of osteoblasts from endocortical bone are required.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Zhang ◽  
Lina Song ◽  
Lie Hou ◽  
Zhengfeng Cao ◽  
Wanwipa Vongsangnak ◽  
...  

Salmonella enteritidis (SE) is a pathogen that can readily infect ovarian tissues and colonize the granulosa cell layer such that it can be transmitted via eggs from infected poultry to humans in whom it can cause food poisoning. Ducks are an important egg-laying species that are susceptible to SE infection, yet the host–pathogen interactions between SE and ducks have not been thoroughly studied to date. Herein, we performed dual RNA-sequencing analyses of these two organisms in a time-resolved infection model of duck granulosa cells (dGCs) by SE. In total, 10,510 genes were significantly differentially expressed in host dGCs, and 265 genes were differentially expressed in SE over the course of infection. These differentially expressed genes (DEGs) of dGCs were enriched in the cytokine–cytokine receptor interaction pathway via KEGG analyses, and the DEGs in SE were enriched in the two-component system, bacterial secretion system, and metabolism of pathogen factors pathways as determined. A subsequent weighted gene co-expression network analysis revealed that the cytokine–cytokine receptor interaction pathway is mostly enriched at 6 h post-infection (hpi). Moreover, a number of pathogenic factors identified in the pathogen–host interaction database (PHI-base) are upregulated in SE, including genes encoding the pathogenicity island/component, type III secretion, and regulators of systemic infection. Furthermore, an intracellular network associated with the regulation of SE infection in ducks was constructed, and 16 cytokine response-related dGCs DEGs (including IL15, CD40, and CCR7) and 17 pathogenesis-related factors (including sseL, ompR, and fliC) were identified, respectively. Overall, these results not only offer new insights into the mechanisms underlying host–pathogen interactions between SE and ducks, but they may also aid in the selection of potential targets for antimicrobial drug development.


2018 ◽  
Vol 115 (38) ◽  
pp. E8968-E8976 ◽  
Author(s):  
Alexander A. Crofts ◽  
Simone M. Giovanetti ◽  
Erica J. Rubin ◽  
Frédéric M. Poly ◽  
Ramiro L. Gutiérrez ◽  
...  

EnterotoxigenicEscherichia coli(ETEC) is a global diarrheal pathogen that utilizes adhesins and secreted enterotoxins to cause disease in mammalian hosts. Decades of research on virulence factor regulation in ETEC has revealed a variety of environmental factors that influence gene expression, including bile, pH, bicarbonate, osmolarity, and glucose. However, other hallmarks of the intestinal tract, such as low oxygen availability, have not been examined. Further, determining how ETEC integrates these signals in the complex host environment is challenging. To address this, we characterized ETEC’s response to the human host using samples from a controlled human infection model. We found ETEC senses environmental oxygen to globally influence virulence factor expression via the oxygen-sensitive transcriptional regulator fumarate and nitrate reduction (FNR) regulator. In vitro anaerobic growth replicates the in vivo virulence factor expression profile, and deletion offnrin ETEC strain H10407 results in a significant increase in expression of all classical virulence factors, including the colonization factor antigen I (CFA/I) adhesin operon and both heat-stable and heat-labile enterotoxins. These data depict a model of ETEC infection where FNR activity can globally influence virulence gene expression, and therefore proximity to the oxygenated zone bordering intestinal epithelial cells likely influences ETEC virulence gene expression in vivo. Outside of the host, ETEC biofilms are associated with seasonal ETEC epidemics, and we find FNR is a regulator of biofilm production. Together these data suggest FNR-dependent oxygen sensing in ETEC has implications for human infection inside and outside of the host.


Sign in / Sign up

Export Citation Format

Share Document