scholarly journals Medicinal-Cosmetic Potential of the Local Endemic Plants of Crete (Greece), Northern Morocco and Tunisia: Priorities for Conservation and Sustainable Exploitation of Neglected and Underutilized Phytogenetic Resources

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1344
Author(s):  
Soumaya Bourgou ◽  
Imtinen Ben Haj Jilani ◽  
Olfa Karous ◽  
Wided Megdiche-Ksouri ◽  
Zeineb Ghrabi-Gammar ◽  
...  

Medicinal-aromatic plants (MAPs) are important sources for the development of new valuable products of interest to human and animal health, and are also used as ornamentals for the horticulture industry. However, the increased global demand and the uncontrolled exploitation of these plants constitute a threat to their sustainability. To date, few scientific investigations have focused on MAPs valorization and their domestication. The purpose of this study was to evaluate for the first time the medicinal-cosmetic potential of 399 local endemic Mediterranean plants confined to Crete (223 taxa), the Mediterranean coast-Rif of Morocco (94), and Tunisia (82). The new methodological scheme was developed by experts through three multidisciplinary co-creative workshops and was adjusted by end-users to point-scoring of nine attributes evaluating the potential of the targeted neglected and underutilized plants (NUPs) in the medicinal-cosmetic sector. The results were demonstrated as percentage of the maximum possible score. These assessments were further linked and discussed with respect to feasibility and readiness timescale evaluations for sustainable exploitation of the focal NUPs. A great diversity of local endemic NUPs (30 taxa, 11 families) were associated with interesting medicinal-cosmetic properties (>35% up to 94.44%). Among them, 8 taxa showed the highest medicinal-cosmetic potential (>55% of maximum possible score), half of which are threatened with extinction. Although ex-situ conservation efforts and applied research work are needed to safeguard and unlock the full potential of the local endemic NUPs evaluated herein, the proposed multifaceted evaluation scheme revealed that some local endemic NUPs of the studied regions can be sustainably exploited in short- or medium-term, following successful examples of Cretan NUPs e.g., Origanum dictramnus. The sustainable exploitation of high scored taxa of the studied regions can be fastened through targeted species-specific research bridging extant research gaps and facilitating conservation and stakeholder attraction.

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1770
Author(s):  
Mohamed Libiad ◽  
Abdelmajid Khabbach ◽  
Mohamed El Haissoufi ◽  
Ioannis Anestis ◽  
Fatima Lamchouri ◽  
...  

The neglected and underutilized plants (NUPs) could become alternative food sources in the agro-alimentary sector, enriching human and animal diets, offering the opportunity for sustainable exploitation, resilience to climate change, and production with resistance to pests and diseases. In the Mediterranean countries, these valuable resources are threatened by climate change, overexploitation, and/or monoculture. In this framework, we evaluated 399 local endemic NUPs of Crete (Greece), the Mediterranean coast, Rif of Morocco, and Tunisia, regarding their agro-alimentary potential, and assessed their feasibility and readiness timescale for sustainable exploitation with own previously published methodology. The methodological scheme was developed by experts in co-creative workshops, using point-scoring of seven attributes to evaluate the potential of the targeted NUPs in the agro-alimentary. Our results showed a diversity of promising local endemic NUPs of different families in the studied regions (Lamiaceae members are prominent), and we outlined the cases of 13 taxa with the highest optimum scores of agro-alimentary potential (>70%). Despite the diversity or the promising potential and current ex-situ conservation efforts to bridge gaps, our study indicated that only a few cases of Cretan local endemic NUPs can be sustainably exploited in the short-term. However, it is argued that many more local endemic NUPs can easily follow sustainable exploitation schemes if specific research gaps are bridged. Since NUPs can help to increased diversification of food production systems by adding new nutritional/beneficial species to human and animal diets, basic and applied research, as well as market and stakeholder attraction, is suggested as prerequisite to unlock the full potential of the focal endemic NUPs in the agro-alimentary sector.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1465
Author(s):  
Katerina Grigoriadou ◽  
Virginia Sarropoulou ◽  
Nikos Krigas ◽  
Eleni Maloupa ◽  
Georgios Tsoktouridis

Conservation and sustainable exploitation of threatened endemic plants with medicinal and/or horticultural/ornamental value can be achieved through the development of effective propagation protocols. After unveiling the bioclimatic preferences of Carlina diae (Asteraceae) with geographic information systems (GIS), four propagation trials were conducted using seeds of this endangered local Cretan endemic for in vivo and in vitro germination, as well as seasonal vegetative propagation trials (softwood cuttings) and micropropagation (nodal explants). Seed germination was accomplished at a level of 77–90% in vivo (30 days) and 96% in vitro (10 days) using an MS medium with 2.9 μM gibberellic acid (GA3). The optimum treatments for cuttings’ rooting were 1000 and 2000 ppm indole-3-butyric acid (IBA) (11–16 roots, 2–3 cm long, 100% rooting) within 40 days in mist. In vitro shoot propagation exhibited a 2.8 proliferation rate after six successive subcultures on an MS medium with 2.9 μM GA3. Both ex vitro rooting and acclimatization were successful in 40 days, with 96% microshoot rooting and an equal survival rate. The GIS-facilitated effective species-specific propagation protocols developed in this study can consolidate the perspective of successful re-introduction of ex situ-raised material of C. diae into wild habitats and may serve its sustainable exploitation for high-added value ornamental products.


2021 ◽  
Vol 13 (5) ◽  
pp. 2539 ◽  
Author(s):  
Nikos Krigas ◽  
Georgios Tsoktouridis ◽  
Ioannis Anestis ◽  
Abdelmajid Khabbach ◽  
Mohamed Libiad ◽  
...  

The neglected and underutilized plants (NUPs) have never been mainstreamed by researchers, politicians and stakeholders for sustainable exploitation in the ornamental-horticultural sector. This study focused on 399 local endemic plants of three Mediterranean regions (Crete, Mediterranean coast-Rif of Morocco, Tunisia), with the aim to develop a new scheme for their multifaceted ornamental-horticultural evaluation facilitating their sustainable exploitation. The methodological scheme was developed within three multidisciplinary co-creative workshops by experts and was adjusted by end-users. The developed scheme uses point and weighted scoring of several attributes relevant to biological and ornamental-horticultural characteristics and concerns three ranking levels: (i) ornamental-horticultural potential (general or subsector-specific; 20 attributes), (ii) sustainable exploitation feasibility (12 attributes) and (iii) readiness timescale (after gap and SWOT analyses) in creating value chains in short-, medium- or long-term. The analysis of the data illustrated two example-cases of already achieved sustainable exploitation with established value chains; outlined the prospects for sustainable exploitation of 18 and 23 local endemic NUPs in short-term and medium-term, respectively; and identified 86 taxa with reachable possibilities in the long-term. The proposed multifaceted evaluation scheme can be applied for the valorisation of NUPs in other areas and may help to define priorities and to identify opportunities and gaps for their sustainable exploitation.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Fabienne Archer ◽  
Alexandra Bobet-Erny ◽  
Maryline Gomes

AbstractThe number and severity of diseases affecting lung development and adult respiratory function have stimulated great interest in developing new in vitro models to study lung in different species. Recent breakthroughs in 3-dimensional (3D) organoid cultures have led to new physiological in vitro models that better mimic the lung than conventional 2D cultures. Lung organoids simulate multiple aspects of the real organ, making them promising and useful models for studying organ development, function and disease (infection, cancer, genetic disease). Due to their dynamics in culture, they can serve as a sustainable source of functional cells (biobanking) and be manipulated genetically. Given the differences between species regarding developmental kinetics, the maturation of the lung at birth, the distribution of the different cell populations along the respiratory tract and species barriers for infectious diseases, there is a need for species-specific lung models capable of mimicking mammal lungs as they are of great interest for animal health and production, following the One Health approach. This paper reviews the latest developments in the growing field of lung organoids.


Author(s):  
Audrey Denvir ◽  
Jeannine Cavender-Bares ◽  
Antonio González-Rodríguez

Gardens and horticulturists play an increasingly important role in plant conservation, both in situ and ex situ. Integrated research and conservation of species intends to work across fields to connect science to conservation practice by engaging actors from different sectors, including gardens. The case of integrated conservation of Quercus brandegeei, a microendemic oak species in Baja California Sur, Mexico, is presented as an example of a collaboration between gardens and academic researchers to create a species-specific conservation plan that incorporates horticultural knowledge.


Author(s):  
Pushpa Chaudhary Tomar ◽  
Shilpa Samir Chapadgaonkar ◽  
Varsha Panchal ◽  
Arpita Ghosh

Industrial activities lead to the release of different types of toxic metals into the environment. Phytoremediation has been established as one of the environmental-friendly and economical processes that have the potential for the remediation of industrial waste. Phytoremediation is used to extract metals from industrial effluents using ex-situ and in-situ treatments. Also, phytoremediation may be used to reclaim the polluted land resource for agricultural purposes. Moreover, this also prevents the bioaccumulation and biomagnification of xenobiotics from farming activities if carried out from polluted land. Phyto-mining can be done to recover and reuse the heavy metals from plant tissues after phytoremediation by plants. This study aimed to give a comprehensive review of recent research work in heavy metal phytoremediation.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Pedro Henriques Abreu ◽  
José Xavier ◽  
Daniel Castro Silva ◽  
Luís Paulo Reis ◽  
Marcelo Petry

Nowadays, there are many technologies that support location systems involving intrusive and nonintrusive equipment and also varying in terms of precision, range, and cost. However, the developers some time neglect the noise introduced by these systems, which prevents these systems from reaching their full potential. Focused on this problem, in this research work a comparison study between three different filters was performed in order to reduce the noise introduced by a location system based on RFID UWB technology with an associated error of approximately 18 cm. To achieve this goal, a set of experiments was devised and executed using a miniature train moving at constant velocity in a scenario with two distinct shapes—linear and oval. Also, this train was equipped with a varying number of active tags. The obtained results proved that the Kalman Filter achieved better results when compared to the other two filters. Also, this filter increases the performance of the location system by 15% and 12% for the linear and oval paths respectively, when using one tag. For a multiple tags and oval shape similar results were obtained (11–13% of improvement).


2021 ◽  
Vol 30 (4) ◽  
pp. 493-506
Author(s):  
S Kimm ◽  
SL Rauterberg ◽  
J Bill ◽  
J Stracke ◽  
N Kemper ◽  
...  

In this case study, a housing system for rabbits (Oryctolagus cuniculus) was developed, complying with the new German Welfare Regulation, and evaluated on-farm with regard to the rabbits' behaviour during four fattening periods. The housing system was characterised by the large group size of fatteners (maximum 65 animals per group, 12 animals per m²) due to the merging of six former single units for does and their litters, post-weaning. A large elevated platform, a box with a roof (small elevated platform), a tube and gnawing materials were made available per unit. The aim being to assess the suitability of the housing system for rabbits with regard to animal welfare, based on behavioural analyses. Therefore, the use of space by the rabbits (n = 247) was investigated by video analysis (instantaneous scan sampling) during daytime. Additionally, the individual behaviour of 20 focal rabbits in different locations was assessed by continuous sampling. Results showed that rabbits preferred to huddle together in the outer units in the first weeks post-weaning. The highest animal densities were found under and in front of the large and on the small platforms. The large platforms were visited increasingly from the 10th fattening day onwards. Elevated platforms supported resting and comfort behaviours. Nonelevated open-top areas enabled upright positions and locomotor behaviours. Aggression and stereotypic behaviours rarely occurred. We conclude that the housing system supported species-specific behaviour and seemed to cater for the needs of rabbits in terms of welfare. Nevertheless, further investigation is needed to ascertain the effects on animal health and performance.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Victor Narat ◽  
Katherine R. Amato ◽  
Noémie Ranger ◽  
Maud Salmona ◽  
Séverine Mercier-Delarue ◽  
...  

Abstract Comparisons of mammalian gut microbiota across different environmental conditions shed light on the diversity and composition of gut bacteriome and suggest consequences for human and animal health. Gut bacteriome comparisons across different environments diverge in their results, showing no generalizable patterns linking habitat and dietary degradation with bacterial diversity. The challenge in drawing general conclusions from such studies lies in the broad terms describing diverse habitats (“wild”, “captive”, “pristine”). We conducted 16S ribosomal RNA gene sequencing to characterize intestinal microbiota of free-ranging sympatric chimpanzees and gorillas in southeastern Cameroon and sympatric chimpanzees and gorillas in a European zoo. We conducted participant-observation and semi-structured interviews among people living near these great apes to understand better their feeding habits and habitats. Unexpectedly, bacterial diversity (ASV, Faith PD and Shannon) was higher among zoo gorillas than among those in the Cameroonian forest, but zoo and Cameroonian chimpanzees showed no difference. Phylogeny was a strong driver of species-specific microbial composition. Surprisingly, zoo gorilla microbiota more closely resembled that of zoo chimpanzees than of Cameroonian gorillas. Zoo living conditions and dietary similarities may explain these results. We encourage multidisciplinary approach integrating environmental sampling and anthropological evaluation to characterize better diverse environmental conditions of such investigations.


2017 ◽  
Vol 34 (1) ◽  
pp. 35-39 ◽  
Author(s):  
Mubeen Zafar ◽  
Muhammad Naeem Awais ◽  
Muhammad Asif ◽  
Amir Razaq ◽  
Gul Amin

Purpose The purpose of this research work is to harvest energy using the piezoelectric properties of ZnO nanowires (NW). Fabrication and characterization of the piezoelectric nanogenerator (NG), based on Al/ZnO/Au structure without using hosting layer, were done to harvest energy. The proposed method has full potential to harvest the cost-effective energy. Design/methodology/approach ZnO NW were fabricated between the thin layers of Al- and Au-coated substrates for the development of piezoelectric NG. To grow ZnO NW, ZnO seed layer was prepared on the Al-coated substrate, and then ZnO NW were grown by aqueous chemical growth method. Finally, Au top electrode was used to conclude the Al/ZnO/Au NG structure. The Al and Au electrodes were used to establish the ohmic and Schottky contacts with ZnO NW, respectively. Findings Surface morphology of the fabricated device was done by using scanning electron microscopy, and electrical characterization of the sample was performed with digital oscilloscope, picoammeter and voltmeter. The energy harvesting experiment was performed to excite the presented device. The fabricated piezoelectric-sensitive device revealed the maximum open circuit voltage up to 5 V and maximum short circuit current up to 30 nA, with a maximum power of 150 nW. Consequently, it was also shown that the output of the fabricated device was increased by applying the stress. The presented work will help for the openings to capture the mechanical energy from the surroundings to power up the nano/micro-devices. This research work shows that NGs have the competency to build the self-powered nanosystems. It has potential applications in biosensing and personal electronics. Originality/value The fabrication of simple and cost-effective piezoelectric NG is done with a structure of Al/ZnO/Au without using hosting layer. The presented method elucidates an efficient and cost-effective approach to harvest the mechanical energy from the native environment.


Sign in / Sign up

Export Citation Format

Share Document