scholarly journals Proteomic Analysis of Mucopolysaccharidosis IIIB Mouse Brain

Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 355 ◽  
Author(s):  
Valeria De Pasquale ◽  
Michele Costanzo ◽  
Rosa Siciliano ◽  
Maria Mazzeo ◽  
Valeria Pistorio ◽  
...  

Mucopolysaccharidosis IIIB (MPS IIIB) is an inherited metabolic disease due to deficiency of α-N-Acetylglucosaminidase (NAGLU) enzyme with subsequent storage of undegraded heparan sulfate (HS). The main clinical manifestations of the disease are profound intellectual disability and neurodegeneration. A label-free quantitative proteomic approach was applied to compare the proteome profile of brains from MPS IIIB and control mice to identify altered neuropathological pathways of MPS IIIB. Proteins were identified through a bottom up analysis and 130 were significantly under-represented and 74 over-represented in MPS IIIB mouse brains compared to wild type (WT). Multiple bioinformatic analyses allowed to identify three major clusters of the differentially abundant proteins: proteins involved in cytoskeletal regulation, synaptic vesicle trafficking, and energy metabolism. The proteome profile of NAGLU−/− mouse brain could pave the way for further studies aimed at identifying novel therapeutic targets for the MPS IIIB. Data are available via ProteomeXchange with the identifier PXD017363.

2020 ◽  
Author(s):  
Jesús Bernardino Velázquez-Fernández ◽  
Gustavo Henrique Martins Ferreira Souza ◽  
Jacobo Rodríguez-Campos ◽  
Michel de Jesús Aceves-Sánchez ◽  
Jorge Bravo-Madrigal ◽  
...  

Abstract Tuberculosis (TB) is the most important infectious disease worldwide, based on the number of new cases and deaths reported by the World Health Organization. Several vaccine candidates against TB have been characterized at the preclinical and clinical levels. The BCGΔBCG1419c vaccine candidate, which lacks the BCG1419c gene that encodes for a c-di-GMP phosphodiesterase, provides improved efficacy against chronic TB, reactivation from latent-like infection, and against TB in the presence of type 2 diabetes in murine models. We previously reported that compared to wild type BCG, BCGΔBCG1419c changed several proteins. Here, using a label-free proteomic approach, we confirmed that a novel, second-generation version of BCGΔBCG1419c maintains changes in antigenic proteins already reported, including differences in secreted proteins, and also found that it modifies its production of proteins involved in redox and nitrogen/protein metabolism, compared with wild type BCG. This work contributes to the proteomic characterization of a novel vaccine candidate that is effective against chronic TB.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jun Zhu ◽  
Hercules Rezende Freitas ◽  
Izumi Maezawa ◽  
Lee-way Jin ◽  
Vivek J. Srinivasan

AbstractIn vivo, minimally invasive microscopy in deep cortical and sub-cortical regions of the mouse brain has been challenging. To address this challenge, we present an in vivo high numerical aperture optical coherence microscopy (OCM) approach that fully utilizes the water absorption window around 1700 nm, where ballistic attenuation in the brain is minimized. Key issues, including detector noise, excess light source noise, chromatic dispersion, and the resolution-speckle tradeoff, are analyzed and optimized. Imaging through a thinned-skull preparation that preserves intracranial space, we present volumetric imaging of cytoarchitecture and myeloarchitecture across the entire depth of the mouse neocortex, and some sub-cortical regions. In an Alzheimer’s disease model, we report that findings in superficial and deep cortical layers diverge, highlighting the importance of deep optical biopsy. Compared to other microscopic techniques, our 1700 nm OCM approach achieves a unique combination of intrinsic contrast, minimal invasiveness, and high resolution for deep brain imaging.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Han Wang ◽  
Pornpimol Tipthara ◽  
Lei Zhu ◽  
Suk Yean Poon ◽  
Kai Tang ◽  
...  

Chromatin-associated nonhistone proteins (CHRAPs) are readily collected from the DNaseI digested crude chromatin preparation. In this study, we show that the absolute abundance-based label-free quantitative proteomic analysis fail to identify potential CHRAPs from the CHRAP-prep. This is because that the most-highly abundant cytoplasmic proteins such as ribosomal proteins are not effectively depleted in the CHRAP-prep. Ribosomal proteins remain the top-ranked abundant proteins in the CHRAP-prep. On the other hand, we show that relative abundance-based SILAC-mediated quantitative proteomic analysis is capable of discovering the potential CHRAPs in the CHRAP-prep when compared to the whole-cell-extract. Ribosomal proteins are depleted from the top SILAC ratio-ranked proteins. In contrast, nucleus-localized proteins or potential CHRAPs are enriched in the top SILAC-ranked proteins. Consistent with this, gene-ontology analysis indicates that CHRAP-associated functions such as transcription, regulation of chromatin structures, and DNA replication and repair are significantly overrepresented in the top SILAC-ranked proteins. Some of the novel CHRAPs are confirmed using the traditional method. Notably, phenotypic assessment reveals that the top SILAC-ranked proteins exhibit the high likelihood of requirement for growth fitness under DNA damage stress. Taken together, our results indicate that the SILAC-mediated proteomic approach is capable of determining CHRAPs without prior knowledge.


2008 ◽  
Vol 22 (11) ◽  
pp. 923-930 ◽  
Author(s):  
Gordon D McLaren ◽  
Christine E McLaren ◽  
Paul C Adams ◽  
James C Barton ◽  
David M Reboussin ◽  
...  

BACKGROUND: Patients with hemochromatosis may suffer organ damage from iron overload, often with serious clinical consequences.OBJECTIVE: To assess prevalences of self-reported symptoms and clinical signs and conditions in persons homozygous for the hemochromatosis gene (HFE)mutation (C282Y) identified by screening.METHODS: Participants were adults 25 years of age or older enrolled in the Hemochromatosis and Iron Overload Screening (HEIRS) Study. C282Y homozygotes (n=282) were compared with control participants without theHFEC282Y or H63D alleles (ie, wild type/wild type; n=364).RESULTS: Previously diagnosed C282Y homozygotes and newly diagnosed homozygotes with elevated serum ferritin levels had higher prevalences of certain symptoms such as chronic fatigue (OR 2.8; 95% CI 1.34 to 5.95, and OR 2.0; 95% CI 1.07 to 3.75, respectively), and had more hyperpigmentation on physical examination (OR 4.7; 95% CI 1.50 to 15.06, and OR 3.7; 95% CI 1.10 to 12.16, respectively) and swelling or tenderness of the second and third metacarpophalangeal joints (OR 4.2; 95% CI 1.37 to 13.03, and OR 3.3; 95% CI 1.17 to 9.49, respectively) than control subjects. Joint stiffness was also more common among newly diagnosed C282Y homozygotes with elevated serum ferritin than among control subjects (OR 2.7; 95% CI 1.38 to 5.30). However, the sex- and age-adjusted prevalences of self-reported symptoms and signs of liver disease, heart disease, diabetes and most other major clinical manifestations of hemochromatosis were similar in C282Y homozygotes and control subjects.CONCLUSIONS: Some symptoms and conditions associated with hemochromatosis were more prevalent among C282Y homozygotes identified by screening than among control subjects, but prevalences of most outcomes were similar in C282Y homozygotes and controls in this primary care-based study.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Jochen Steppan ◽  
Ivy Wang ◽  
Yehudit Bergman ◽  
Siqi Tan ◽  
Sandeep Jandu ◽  
...  

Introduction: Stiffening of the central vasculature is a strong and independent predictor of adverse cardiovascular events. Vascular stiffening is a complex process that involves changes in the vessel wall composition and smooth muscle cell (SMC) function. We recently used an unbiased proteomic approach to identify Lysyl oxidase like 2 (LOXL2) as a potential new target in vascular stiffness. The goal of this study is to characterize the role of LOXL2 in vascular stiffening and its potential as a target to reverse vascular stiffness associated with hypertension. Results: We demonstrate that decreased nitric oxide (NO) bioavailability results in increased secretion and activity of LOXL2 in SMCs. LOXL2 knockdown markedly attenuates SMC adhesion, motility, and proliferation and results in diminished matrix deposition. LOXL2 knockdown also results in striking changes in the stiffness and cytoskeletal remodeling events in CMSs. Tensile testing shows that intact aortas of LOXL2+/- animals are stiffer when compared with those from wild type mice, while there is no difference in decellularized vessels. We next investigated the role of LOXL2 in the development of hypertension using angiotensin II (AngII) infusion in LOXL2+/- (group 1) and wild type (WT; group 2) mice. BP and pulse wave velocity (PWV) increased significantly with AngII infusion in both groups during the study period, without a significant change in heart rate. Compared to WT animals, contractile responsiveness was markedly diminished in LOXL2+/- animals at baseline as well as with AngII infusion when compared with untreated controls. The NO- dependent vasodilatory response to acetylcholine was identical at baseline and diminished significantly with AngII infusion in both groups of animals. There was no difference between the groups in the endothelium-independent response to sodium nitroprusside. Conclusion: In this study, we demonstrated the role of NO in the regulation of LOXL2. Interestingly, LOXL2 appears to have a dual role in vascular stiffness by affecting both SMC function as well as matrix composition. We therefore conclude that LOXL2 is a novel target involved in vascular stiffness that requires further characterization to elicit the possibility of therapeutic intervention.


2021 ◽  
Author(s):  
Shixiao Dong ◽  
Deyu Huang ◽  
Zheng Wang ◽  
Guanyou Zhang ◽  
Fengjuan Zhang ◽  
...  

Abstract Rotavirus was the an important causative agent of acute gastroenteritis in children. In China, rotavirus was positive in approximately 30% of the diarrhea children and become a serious public problem. This study was carried out to investigate the clinical and molecular epidemic characterization of rotavirus infection among children under 5 years old with acute diarrhea in Shandong province, China. From July 2017 to June 2018, a total of 1211 fecal specimens were detected and the prevalence of rotavirus infection was 32.12%. The mean age of positive children was 12.2 ± 10.9 months and the highest infection rate was observed in children aged 7–12 months with a rate of 41.64%. G9P[8] (76.61%) was the most prevalent combinations followed by G2P[4] (7.20%), G3P[8] (3.60%) and G9P[4] (2.06%). In addition to diarrhea, vomiting, fever and dehydration were the most common accompanied symptoms. In general, there was no significant difference in clinical manifestations among different age groups. However, the clinical manifestations between vaccinated and unvaccinated children were significantly different. Vaccinated children showed lower incidence and frequency of vomiting, lower incidence and degree of dehydration, lower incidence of severe cases than unvaccinated children. The findings suggested necessary to continue rotavirus strains surveillance in order to monitor the change of prevalent genotype. Moreover, introducing vaccine into national immunization program to prevent and control rotavirus infections is needed in China.


2015 ◽  
Vol 67 (6) ◽  
pp. 1510-1518
Author(s):  
S.A. Headley ◽  
T.R. Santos ◽  
L. Bodnar ◽  
J.P.E. Saut ◽  
A.P. Silva ◽  
...  

This study investigated the occurrence of canine distemper virus (CDV) by evaluating the presence of viral RNA within urine samples of dogs from Uberlândia, MG, with clinical manifestations suggestive of infection by CDV by targeting the CDV N gene. Of the clinical samples collected ( n =33), CDV viruria was detected in 45.5%. Five dogs died spontaneously; all had characteristic CDV-associated histopathological alterations and demonstrated CDV viruria. Statistical analyses revealed that the age, gender, breed, or the organ system of the dog affected had no influence on the occurrence of canine distemper. Myoclonus and motor incoordination were the most significant neurological manifestations observed. A direct association was observed between keratoconjunctivitis and dogs with CDV viruria. These findings suggest that CDV viruria in symptomatic dogs might not be age related, and that symptomatic dogs can demonstrate clinical manifestations attributed to CDV without viruria identified by RT-PCR. Additionally, the results of the sequence identities analysed have suggested that all Brazilian wild-type strains of CDV currently identified are closely related and probably originated from the same lineage of CDV. Nevertheless, phylogenetic analyses suggest that there are different clusters of wild-type strains of CDV circulating within urban canine populations in Brazil.


2003 ◽  
Vol 94 (6) ◽  
pp. 2534-2544 ◽  
Author(s):  
Wieslaw Kozak ◽  
Anna Kozak

Male C57BL/6J mice deficient in nitric oxide synthase (NOS) genes (knockout) and control (wild-type) mice were implanted intra-abdominally with battery-operated miniature biotelemeters (model VMFH MiniMitter, Sunriver, OR) to monitor changes in body temperature. Intravenous injection of lipopolysaccharide (LPS; 50 μg/kg) was used to trigger fever in response to systemic inflammation in mice. To induce a febrile response to localized inflammation, the mice were injected subcutaneously with pure turpentine oil (30 μl/animal) into the left hindlimb. Oral administration (gavage) of N G-monomethyl-l-arginine (l-NMMA) for 3 days (80 mg · kg−1 · day−1in corn oil) before injection of pyrogens was used to inhibit all three NOSs ( N G-monomethyl-d-arginine acetate salt and corn oil were used as control). In normal male C57BL/6J mice, l-NMMA inhibited the LPS-induced fever by ∼60%, whereas it augmented fever by ∼65% in mice injected with turpentine. Challenging the respective NOS knockout mice with LPS and with l-NMMA revealed that inducible NOS and neuronal NOS isoforms are responsible for the induction of fever to LPS, whereas endothelial NOS (eNOS) is not involved. In contrast, none of the NOS isoforms appeared to trigger fever to turpentine. Inhibition of eNOS, however, exacerbates fever in mice treated with l-NMMA and turpentine, indicating that eNOS participates in the antipyretic mechanism. These data support the hypothesis that nitric oxide is a regulator of fever. Its action differs, however, depending on the pyrogen used and the NOS isoform.


Sign in / Sign up

Export Citation Format

Share Document