scholarly journals Efficacy Assessment of an Uncharged Reactivator of NOP-Inhibited Acetylcholinesterase Based on Tetrahydroacridine Pyridine-Aldoxime Hybrid in Mouse Compared to Pralidoxime

Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 858 ◽  
Author(s):  
André-Guilhem Calas ◽  
Anne-Sophie Hanak ◽  
Nina Jaffré ◽  
Aurélie Nervo ◽  
José Dias ◽  
...  

(1) Background: Human exposure to organophosphorus compounds employed as pesticides or as chemical warfare agents induces deleterious effects due to cholinesterase inhibition. One therapeutic approach is the reactivation of inhibited acetylcholinesterase by oximes. While currently available oximes are unable to reach the central nervous system to reactivate cholinesterases or to display a wide spectrum of action against the variety of organophosphorus compounds, we aim to identify new reactivators without such drawbacks. (2) Methods: This study gathers an exhaustive work to assess in vitro and in vivo efficacy, and toxicity of a hybrid tetrahydroacridine pyridinaldoxime reactivator, KM297, compared to pralidoxime. (3) Results: Blood–brain barrier crossing assay carried out on a human in vitro model established that KM297 has an endothelial permeability coefficient twice that of pralidoxime. It also presents higher cytotoxicity, particularly on bone marrow-derived cells. Its strong cholinesterase inhibition potency seems to be correlated to its low protective efficacy in mice exposed to paraoxon. Ventilatory monitoring of KM297-treated mice by double-chamber plethysmography shows toxic effects at the selected therapeutic dose. This breathing assessment could help define the No Observed Adverse Effect Level (NOAEL) dose of new oximes which would have a maximum therapeutic effect without any toxic side effects.

2010 ◽  
Vol 56 (12) ◽  
pp. 1003-1010 ◽  
Author(s):  
Qin Wang ◽  
Xiao-jun Hou ◽  
Kun Cai ◽  
Tao Li ◽  
Yue-nan Liu ◽  
...  

Shiga toxins produced by Escherichia coli O157:H7 cause a wide spectrum of enteric diseases, such as lethal hemorrhagic colitis and hemolytic uremic syndrome. In this study, the B subunit protein of Shiga toxin type 1 (Stx1) was produced in the E. coli system, was further purified by Ni-column Affinity Chromatography method, and was then used as an immunogen to immunize laying hens for yolk immunoglobulin (IgY) production. Titers of IgY increased gradually with boosting vaccination and, finally, reached a level of 105, remaining steady over 1 year. Then the protective efficacy of IgY against Stx1 was evaluated by in vitro and in vivo experiments. It was shown that the anti-Stx1 IgY could effectively block the binding of Stx1 to the Hela cells and could protect BALB/c mice from toxin challenges. The data indicates the facility of using egg yolk IgY as a therapeutic intervention in cases of Shiga toxin intoxication.


2019 ◽  
Vol 19 (12) ◽  
pp. 970-979 ◽  
Author(s):  
J. Bajgar ◽  
J. Kassa ◽  
T. Kucera ◽  
K. Musilek ◽  
D. Jun ◽  
...  

Nerve agents belong to the most dangerous chemical warfare agents and can be/were misused by terrorists. Effective prophylaxis and treatment is necessary to diminish their effect. General principles of prophylaxis are summarized (protection against acetylcholinesterase inhibition, detoxification, treatment “in advance” and use of different drugs). They are based on the knowledge of mechanism of action of nerve agents. Among different examinations, it is necessary to test prophylactic effectivity in vivo and compare the results with protection in vitro. Chemical and biological approaches to the development of new prophylactics would be applied simultaneously during this research. Though the number of possible prophylactics is relatively high, the only four drugs were introduced into military medical practice. At present, pyridostigmine seems to be common prophylactic antidote; prophylactics panpal (tablets with pyridostigmine, trihexyphenidyl and benactyzine), transant (transdermal patch containing HI-6) are other means introduced into different armies as prophylactics. Scavenger commercionally available is Protexia®. Future development will be focused on scavengers, and on other drugs either reversible cholinesterase inhibitors (e.g., huperzine A, gallantamine, physostigmine, acridine derivatives) or other compounds.


2005 ◽  
Vol 12 (9) ◽  
pp. 1063-1068 ◽  
Author(s):  
Ashok K. Chaturvedi ◽  
A. Kavishwar ◽  
G. B. Shiva Keshava ◽  
P. K. Shukla

ABSTRACT Most of the biological functions related to pathogenicity and virulence reside in the fungal cell wall, which, being the outermost part of the cell, mediates the host-fungus interplay. For these reasons much effort has focused on the discovery of useful inhibitors of cell wall glucan, chitin, and mannoprotein biosynthesis. In the absence of a wide-spectrum, safe, and potent antifungal agent, a new strategy for antifungal therapy is directed towards the development of monoclonal antibodies (MAbs). In the present study the MAb A9 (immunoglobulin G1 [IgG1]) was identified from hybridomas raised in BALB/c mice immunized with cell wall antigen of Aspergillus fumigatus. The immunoreactive epitopes for this IgG1 MAb appeared to be associated with a peptide moiety, and indirect immunofluorescence microscopy revealed its binding to the cell wall surface of hyphae as well as with swollen conidia. MAb A9 inhibited hyphal development as observed by MTT [3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay (25.76%), reduced the duration of spore germination, and exerted an in vitro cidal effect against Aspergillus fumigatus. The in vivo protective efficacy of MAb A9 was also evaluated in a murine model of invasive aspergillosis, where a reduction in CFU (>4 log10 units) was observed in kidney tissue of BALB/c mice challenged with A. fumigatus (2 × 105 CFU/ml) and where enhanced mean survival times (19.5 days) compared to the control (7.1 days) and an irrelevant MAb (6.1 days) were also observed.


2019 ◽  
Vol 23 (5) ◽  
pp. 628-639 ◽  
Author(s):  
Dietrich E. Lorke ◽  
Georg A. Petroianu

Standard therapy of Organophosphorus Compound (OPC) poisoning with oxime-type acetylcholinesterase (AChE) reactivators is unsatisfactory. New bispyridinium oximes have therefore been synthesized. This review summarizes in vitro characteristics of established (pralidoxime, obidoxime, trimedoxime, HI-6) and experimental (K-)oximes, and compares their protective efficacy in vivo, when administered shortly after exposure to Diisopropylfluorophosphate (DFP) and three OPC pesticides (ethyl-paraoxon, methylparaoxon, azinphos-methyl) in the same experimental setting. In addition to reactivating cholinesterase, oximes also inhibit this enzyme; strongest AChE inhibition (IC50 rat blood: 1-9 µM) is observed in vitro for the oximes with a xylene linker (K-107, K-108, K-113). AChE inhibition is weakest for K-27, K-48 and HI-6 (IC50 >500 µM). Intrinsic AChE inhibition of oximes in vitro (IC50, rat) is strongly correlated with their LD50 (rat): oximes with a high IC50 (K-27, K-48, pralidoxime, obidoxime) also show a high LD50, making them relatively non-toxic, whereas oximes K-107, K-108 and K-113 (low IC50 and LD50) are far more toxic. When given in vivo after OP exposure, best protection is conferred by K-27, reducing the relative risk of death to 16-58% of controls, which is significantly superior to pralidoxime in DFP-, ethyl-paraoxon- and methylparaoxon- exposure, and to obidoxime in ethyl-paraoxon- and methyl-paraoxon-exposure. Marked reduction in mortality is also achieved by K-48, K-53, K-74 and K-75, whereas K-107, K-108 and K-113 have no or only a very weak mortality-reducing effect. K-27 is the most promising K-oxime due to its strong reactivation potency, weak cholinesterase inhibition and high LD50, allowing administration in large, very efficacious dosages.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3029
Author(s):  
Franz Worek ◽  
Horst Thiermann ◽  
Marianne Koller ◽  
Timo Wille

The implementation of the Chemical Weapons Convention (CWC) in 1997 was a milestone in the prohibition of chemical warfare agents (CWA). Yet, the repeated use of CWA underlines the ongoing threat to the population. Organophosphorus (OP) nerve agents still represent the most toxic CWA subgroup. Defensive research on nerve agents is mainly focused on the “classical five”, namely tabun, sarin, soman, cyclosarin and VX, although Schedule 1 of the CWC covers an unforeseeable number of homologues. Likewise, an uncounted number of OP pesticides have been produced in previous decades. Our aim was to determine the in vitro inhibition kinetics of selected organophosphono- and organophosphorothioates with human AChE, as well as hydrolysis of the agents in human plasma and reactivation of inhibited AChE, in order to derive potential structure–activity relationships. The investigation of the interactions of selected OP compounds belonging to schedule 1 (V-agents) and schedule 2 (amiton) of the CWC with human AChE revealed distinct structural effects of the P-alkyl, P-O-alkyl and N,N-dialkyl residues on the inhibitory potency of the agents. Irrespective of structural modifications, all tested V-agents presented as highly potent AChE inhibitors. The high stability of the tested agents in human plasma will most likely result in long-lasting poisoning in vivo, having relevant consequences for the treatment regimen. In conclusion, the results of this study emphasize the need to investigate the biological effects of nerve agent analogues in order to assess the efficacy of available medical countermeasures.


Author(s):  
José Daniel Figueroa-Villar ◽  
Elaine C. Petronilho ◽  
Kamil Kuca ◽  
Tanos C. C. Franca

Background: Neurotoxic chemical warfare agents can be classified as some of the most dangerous chemicals for humanity. The most effective of those agents are the organophosphates (OPs) capable of restricting the enzyme acetylcholinesterase (AChE), which in turn controls the nerve impulse transmission. When AChE is inhibited by OPs, its reactivation can be usually performed through cationic oximes. However, until today it has not been developed one universal defense agent, with complete effective reactivation activity for AChE inhibited by any of the many types of existing neurotoxic OPs. For this reason, before treating people intoxicated by an OP, it is necessary to determine the neurotoxic compound that was used for contamination, in order to select the most effective oxime. Unfortunately, this task usually requires a relative long time, raising the possibility of death. Cationic oximes also display a limited capacity of permeating the blood-brain barrier (BBB). This fact compromises their capacity of reactivating AChE inside the nervous system. Methods: We performed a comprehensive search on the data about OPs available on the scientific literature today in order to cover all the main drawbacks still faced in the research for the development of effective antidotes against those compounds. Results: Therefore, this review about neurotoxic OPs and the reactivation of AChE, provides insights for the new agents’ development. The most expected defense agent is a molecule without toxicity and effective to reactivate AChE inhibited by all neurotoxic OPs. Conclusion: To develop these new agents it is necessary the application of diverse scientific areas of research, especially theoretical procedures as computational science (computer simulation, docking and dynamics); organic synthesis; spectroscopic methodologies; biology, biochemical and biophysical information; medicinal chemistry, pharmacology and toxicology.


2019 ◽  
Vol 20 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Abdullah M. Alnuqaydan ◽  
Bilal Rah

Background:Tamarix Articulata (T. articulata), commonly known as Tamarisk or Athal in Arabic region, belongs to the Tamaricaece species. It is an important halophytic medicinal plant and a good source of polyphenolic phytochemical(s). In traditional medicines, T. articulata extract is commonly used, either singly or in combination with other plant extracts against different ailments since ancient times.Methods:Electronic database survey via Pubmed, Google Scholar, Researchgate, Scopus and Science Direct were used to review the scientific inputs until October 2018, by searching appropriate keywords. Literature related to pharmacological activities of T. articulata, Tamarix species, phytochemical analysis of T. articulata, biological activities of T. articulata extracts. All of these terms were used to search the scientific literature associated with T. articulata; the dosage of extract, route of administration, extract type, and in-vitro and in-vivo model.Results:Numerous reports revealed that T. articulata contains a wide spectrum of phytochemical(s), which enables it to have a wide window of biological properties. Owing to the presence of high content of phytochemical compounds like polyphenolics and flavonoids, T. articulata is a potential source of antioxidant, anti-inflammatory and antiproliferative properties. In view of these pharmacological properties, T. articulata could be a potential drug candidate to treat various clinical conditions including cancer in the near future.Conclusion:In this review, the spectrum of phytochemical(s) has been summarized for their pharmacological properties and the mechanisms of action, and the possible potential therapeutic applications of this plant against various diseases discussed.


2020 ◽  
Vol 21 (5) ◽  
pp. 499-508 ◽  
Author(s):  
Rémi Safi ◽  
Marwan El-Sabban ◽  
Fadia Najjar

Ferula hermonis Boiss, is an endemic plant of Lebanon, locally known as “shilsh Elzallouh”. It has been extensively used in the traditional medicine as an aphrodisiac and for the treatment of sexual impotence. Crude extracts and isolated compounds of ferula hermonis contain phytoestrogenic substances having a wide spectrum of in vitro and in vivo pharmacological properties including anti-osteoporosis, anti-inflammatory, anti-microbial and anti-fungal, anti-cancer and as sexual activity enhancer. The aim of this mini-review is to highlight the traditional and novel applications of this plant’s extracts and its major sesquiterpene ester, ferutinin. The phytochemical constituents and the pharmacological uses of ferula hermonis crude extract and ferutinin specifically will be discussed.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Guoying Zhang ◽  
Cheng Xue ◽  
Yiming Zeng

Abstract Background We have previously found that β-elemene could inhibit the viability of airway granulation fibroblasts and prevent airway hyperplastic stenosis. This study aimed to elucidate the underlying mechanism and protective efficacy of β-elemene in vitro and in vivo. Methods Microarray and bioinformatic analysis were used to identify altered pathways related to cell viability in a β-elemene-treated primary cell model and to construct a β-elemene-altered ceRNA network modulating the target pathway. Loss of function and gain of function approaches were performed to examine the role of the ceRNA axis in β-elemene's regulation of the target pathway and cell viability. Additionally, in a β-elemene-treated rabbit model of airway stenosis, endoscopic and histological examinations were used to evaluate its therapeutic efficacy and further verify its mechanism of action. Results The hyperactive ILK/Akt pathway and dysregulated LncRNA-MIR143HG, which acted as a miR-1275 ceRNA to modulate ILK expression, were suppressed in β-elemene-treated airway granulation fibroblasts; β-elemene suppressed the ILK/Akt pathway via the MIR143HG/miR-1275/ILK axis. Additionally, the cell cycle and apoptotic phenotypes of granulation fibroblasts were altered, consistent with ILK/Akt pathway activity. In vivo application of β-elemene attenuated airway granulation hyperplasia and alleviated scar stricture, and histological detections suggested that β-elemene's effects on the MIR143HG/miR-1275/ILK axis and ILK/Akt pathway were in line with in vitro findings. Conclusions MIR143HG and ILK may act as ceRNA to sponge miR-1275. The MIR143HG/miR-1275/ILK axis mediates β-elemene-induced cell cycle arrest and apoptosis of airway granulation fibroblasts by modulating the ILK/Akt pathway, thereby inhibiting airway granulation proliferation and ultimately alleviating airway stenosis.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Pascal Donsbach ◽  
Dagmar Klostermeier

Abstract RNA helicases are a ubiquitous class of enzymes involved in virtually all processes of RNA metabolism, from transcription, mRNA splicing and export, mRNA translation and RNA transport to RNA degradation. Although ATP-dependent unwinding of RNA duplexes is their hallmark reaction, not all helicases catalyze unwinding in vitro, and some in vivo functions do not depend on duplex unwinding. RNA helicases are divided into different families that share a common helicase core with a set of helicase signature motives. The core provides the active site for ATP hydrolysis, a binding site for the non-sequence-specific interactions with RNA, and in many cases a basal unwinding activity. Its activity is often regulated by flanking domains, by interaction partners, or by self-association. In this review, we summarize the regulatory mechanisms that modulate the activities of the helicase core. Case studies on selected helicases with functions in translation, splicing, and RNA sensing illustrate the various modes and layers of regulation in time and space that harness the helicase core for a wide spectrum of cellular tasks.


Sign in / Sign up

Export Citation Format

Share Document