scholarly journals Autophagy Stimulus-Dependent Role of the Small GTPase Ras2 in Peroxisome Degradation

Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1553
Author(s):  
Fahd Boutouja ◽  
Harald W. Platta

The changing accessibility of nutrient resources induces the reprogramming of cellular metabolism in order to adapt the cell to the altered growth conditions. The nutrient-depending signaling depends on the kinases mTOR (mechanistic target of rapamycin), which is mainly activated by nitrogen-resources, and PKA (protein kinase A), which is mainly activated by glucose, as well as both of their associated factors. These systems promote protein synthesis and cell proliferation, while they inhibit degradation of cellular content by unselective bulk autophagy. Much less is known about their role in selective autophagy pathways, which have a more regulated cellular function. Especially, we were interested to analyse the central Ras2-module of the PKA-pathway in the context of peroxisome degradation. Yeast Ras2 is homologous to the mammalian Ras proteins, whose mutant forms are responsible for 33% of human cancers. In the present study, we were able to demonstrate a context-dependent role of Ras2 activity depending on the type of mTOR-inhibition and glucose-sensing situation. When mTOR was inhibited directly via the macrolide rapamycin, peroxisome degradation was still partially suppressed by Ras2, while inactivation of Ras2 resulted in an enhanced degradation of peroxisomes, suggesting a role of Ras2 in the inhibition of peroxisome degradation in glucose-grown cells. In contrast, the inhibition of mTOR by shifting cells from oleate-medium, which lacks glucose, to pexophagy-medium, which contains glucose and is limited in nitrogen, required Ras2-activity for efficient pexophagy, strongly suggesting that the role of Ras2 in glucose sensing-associated signaling is more important in this context than its co-function in mTOR-related autophagy-inhibition.

Author(s):  
B.J. Panessa-Warren ◽  
G.T. Tortora ◽  
J.B. Warren

Some bacteria are capable of forming highly resistant spores when environmental conditions are not adequate for growth. Depending on the genus and species of the bacterium, these endospores are resistant in varying degrees to heat, cold, pressure, enzymatic degradation, ionizing radiation, chemical sterilants,physical trauma and organic solvents. The genus Clostridium, responsible for botulism poisoning, tetanus, gas gangrene and diarrhea in man, produces endospores which are highly resistant. Although some sporocides can kill Clostridial spores, the spores require extended contact with a sporocidal agent to achieve spore death. In most clinical situations, this extended period of treatment is not possible nor practical. This investigation examines Clostridium sporogenes endospores by light, transmission and scanning electron microscopy under various dormant and growth conditions, cataloging each stage in the germination and outgrowth process, and analyzing the role played by the exosporial membrane in the attachment and germination of the spore.


2021 ◽  
Vol 22 (7) ◽  
pp. 3787
Author(s):  
Hussam Ibrahim ◽  
Philipp Reus ◽  
Anna Katharina Mundorf ◽  
Anna-Lena Grothoff ◽  
Valerie Rudenko ◽  
...  

Repressor protein period (PER) complexes play a central role in the molecular oscillator mechanism of the mammalian circadian clock. While the main role of nuclear PER complexes is transcriptional repression, much less is known about the functions of cytoplasmic PER complexes. We found with a biochemical screen for PER2-interacting proteins that the small GTPase regulator GTPase-activating protein and VPS9 domain-containing protein 1 (GAPVD1), which has been identified previously as a component of cytoplasmic PER complexes in mice, is also a bona fide component of human PER complexes. We show that in situ GAPVD1 is closely associated with casein kinase 1 delta (CSNK1D), a kinase that regulates PER2 levels through a phosphoswitch mechanism, and that CSNK1D regulates the phosphorylation of GAPVD1. Moreover, phosphorylation determines the kinetics of GAPVD1 degradation and is controlled by PER2 and a C-terminal autoinhibitory domain in CSNK1D, indicating that the regulation of GAPVD1 phosphorylation is a novel function of cytoplasmic PER complexes and might be part of the oscillator mechanism or an output function of the circadian clock.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 70
Author(s):  
Malgorzata Kloc ◽  
Ahmed Uosef ◽  
Martha Villagran ◽  
Robert Zdanowski ◽  
Jacek Z. Kubiak ◽  
...  

The small GTPase RhoA, and its down-stream effector ROCK kinase, and the interacting Rac1 and mTORC2 pathways, are the principal regulators of the actin cytoskeleton and actin-related functions in all eukaryotic cells, including the immune cells. As such, they also regulate the phenotypes and functions of macrophages in the immune response and beyond. Here, we review the results of our and other’s studies on the role of the actin and RhoA pathway in shaping the macrophage functions in general and macrophage immune response during the development of chronic (long term) rejection of allografts in the rodent cardiac transplantation model. We focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection therapies.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Lan Jin ◽  
Yunhe Chen ◽  
Dan Cheng ◽  
Zhikai He ◽  
Xinyi Shi ◽  
...  

AbstractColorectal cancer (CRC) is one of the most aggressive and lethal cancers. The role of autophagy in the pathobiology of CRC is intricate, with opposing functions manifested in different cellular contexts. The Yes-associated protein (YAP), a transcriptional coactivator inactivated by the Hippo tumor-suppressor pathway, functions as an oncoprotein in a variety of cancers. In this study, we found that YAP could negatively regulate autophagy in CRC cells, and consequently, promote tumor progression of CRC in vitro and in vivo. Mechanistically, YAP interacts with TEAD forming a complex to upregulate the transcription of the apoptosis-inhibitory protein Bcl-2, which may subsequently facilitate cell survival by suppressing autophagy-related cell death; silencing Bcl-2 expression could alleviate YAP-induced autophagy inhibition without affecting YAP expression. Collectively, our data provide evidence for YAP/Bcl-2 as a potential therapeutic target for drug exploration against CRC.


2010 ◽  
Vol 426 (3) ◽  
pp. 355-364 ◽  
Author(s):  
Jofre Ferrer-Dalmau ◽  
Asier González ◽  
Maria Platara ◽  
Clara Navarrete ◽  
José L. Martínez ◽  
...  

Maintenance of cation homoeostasis is a key process for any living organism. Specific mutations in Glc7, the essential catalytic subunit of yeast protein phosphatase 1, result in salt and alkaline pH sensitivity, suggesting a role for this protein in cation homoeostasis. We screened a collection of Glc7 regulatory subunit mutants for altered tolerance to diverse cations (sodium, lithium and calcium) and alkaline pH. Among 18 candidates, only deletion of REF2 (RNA end formation 2) yielded increased sensitivity to these conditions, as well as to diverse organic toxic cations. The Ref2F374A mutation, which renders it unable to bind Glc7, did not rescue the salt-related phenotypes of the ref2 strain, suggesting that Ref2 function in cation homoeostasis is mediated by Glc7. The ref2 deletion mutant displays a marked decrease in lithium efflux, which can be explained by the inability of these cells to fully induce the Na+-ATPase ENA1 gene. The effect of lack of Ref2 is additive to that of blockage of the calcineurin pathway and might disrupt multiple mechanisms controlling ENA1 expression. ref2 cells display a striking defect in vacuolar morphogenesis, which probably accounts for the increased calcium levels observed under standard growth conditions and the strong calcium sensitivity of this mutant. Remarkably, the evidence collected indicates that the role of Ref2 in cation homoeostasis may be unrelated to its previously identified function in the formation of mRNA via the APT (for associated with Pta1) complex.


2010 ◽  
Vol 2010 ◽  
pp. 1-4 ◽  
Author(s):  
Jirapa Chetsawang ◽  
Piyarat Govitrapong ◽  
Banthit Chetsawang

It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.


1998 ◽  
Vol 9 (12) ◽  
pp. 3561-3578 ◽  
Author(s):  
Harri Palokangas ◽  
Ming Ying ◽  
Kalervo Väänänen ◽  
Jaakko Saraste

The effect of the vacuolar H+-ATPase inhibitor bafilomycin A1 (Baf A1) on the localization of pre-Golgi intermediate compartment (IC) and Golgi marker proteins was used to study the role of acidification in the function of early secretory compartments. Baf A1 inhibited both brefeldin A- and nocodazole-induced retrograde transport of Golgi proteins to the endoplasmic reticulum (ER), whereas anterograde ER-to-Golgi transport remained largely unaffected. Furthermore, p58/ERGIC-53, which normally cycles between the ER, IC, and cis-Golgi, was arrested in pre-Golgi tubules and vacuoles, and the number of p58-positive ∼80-nm Golgi (coatomer protein I) vesicles was reduced, suggesting that the drug inhibits the retrieval of the protein from post-ER compartments. In parallel, redistribution of β-coatomer protein from the Golgi to peripheral pre-Golgi structures took place. The small GTPase rab1p was detected in short pre-Golgi tubules in control cells and was efficiently recruited to the tubules accumulating in the presence of Baf A1. In contrast, these tubules showed no enrichment of newly synthesized, anterogradely transported proteins, indicating that they participate in retrograde transport. These results suggest that the pre-Golgi structures contain an active H+-ATPase that regulates retrograde transport at the ER–Golgi boundary. Interestingly, although Baf A1 had distinct effects on peripheral pre-Golgi structures, only more central, p58-containing elements accumulated detectable amounts of 3-(2,4-dinitroanilino)-3′-amino-N-methyldipropylamine (DAMP), a marker for acidic compartments, raising the possibility that the lumenal pH of the pre-Golgi structures gradually changes in parallel with their translocation to the Golgi region.


2014 ◽  
Vol 27 (6) ◽  
pp. 557-566 ◽  
Author(s):  
Shuai Hu ◽  
Xiaoying Zhou ◽  
Xiaoying Gu ◽  
Shulin Cao ◽  
Chengfang Wang ◽  
...  

Like many other filamentous ascomycetes, Fusarium graminearum contains two genes named CPK1 and CPK2 that encode the catalytic subunits of cyclic AMP (cAMP)-dependent protein kinase A (PKA). To determine the role of cAMP signaling in pathogenesis and development in F. graminearum, we functionally characterized these two genes. In addition, we generated and characterized the cpk1 cpk2 double and fac1 adenylate cyclase gene deletion mutants. The cpk1 mutant was significantly reduced in vegetative growth, conidiation, and deoxynivalenol production but it had increased tolerance to elevated temperatures. It was defective in the production of penetration branches on plant surfaces, colonization of wheat rachises, and spreading in flowering wheat heads. Deletion of CPK1 had no effect on perithecium development but the cpk1 mutant was defective in ascospore maturation and releasing. In contrast, the cpk2 mutant had no detectable phenotypes, suggesting that CPK2 contributes minimally to PKA activities in F. graminearum. Nevertheless, the cpk1 cpk2 double mutant had more severe defects in vegetative growth and rarely produced morphologically abnormal conidia. The double mutant, unlike the cpk1 or cpk2 mutant, was nonpathogenic and failed to form perithecia on self-mating plates. Therefore, CPK1 and CPK2 must have overlapping functions in vegetative growth, differentiation, and plant infection in F. graminearum. The fac1 mutant was also nonpathogenic and had growth defects similar to those of the cpk1 cpk2 mutant. However, deletion of FAC1 had no effect on conidium morphology. These results indicated that CPK1 is the major PKA catalytic subunit gene and that the cAMP-PKA pathway plays critical roles in hyphal growth, conidiation, ascosporogenesis, and plant infection in F. graminearum.


Sign in / Sign up

Export Citation Format

Share Document