scholarly journals TRP Channels as Sensors of Aldehyde and Oxidative Stress

Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1401
Author(s):  
Katharina E. M. Hellenthal ◽  
Laura Brabenec ◽  
Eric R. Gross ◽  
Nana-Maria Wagner

The transient receptor potential (TRP) cation channel superfamily comprises more than 50 channels that play crucial roles in physiological processes. TRP channels are responsive to several exogenous and endogenous biomolecules, with aldehydes emerging as a TRP channel trigger contributing to a cellular cascade that can lead to disease pathophysiology. The body is not only exposed to exogenous aldehydes via tobacco products or alcoholic beverages, but also to endogenous aldehydes triggered by lipid peroxidation. In response to lipid peroxidation from inflammation or organ injury, polyunsaturated fatty acids undergo lipid peroxidation to aldehydes, such as 4-hydroxynonenal. Reactive aldehydes activate TRP channels via aldehyde-induced protein adducts, leading to the release of pro-inflammatory mediators driving the pathophysiology caused by cellular injury, including inflammatory pain and organ reperfusion injury. Recent studies have outlined how aldehyde dehydrogenase 2 protects against aldehyde toxicity through the clearance of toxic aldehydes, indicating that targeting the endogenous aldehyde metabolism may represent a novel treatment strategy. An addition approach can involve targeting specific TRP channel regions to limit the triggering of a cellular cascade induced by aldehydes. In this review, we provide a comprehensive summary of aldehydes, TRP channels, and their interactions, as well as their role in pathological conditions and the different therapeutical treatment options.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1627
Author(s):  
Lujain Aloum ◽  
Eman Alefishat ◽  
Janah Shaya ◽  
Georg A. Petroianu

Sneezing (sternutatio) is a poorly understood polysynaptic physiologic reflex phenomenon. Sneezing has exerted a strange fascination on humans throughout history, and induced sneezing was widely used by physicians for therapeutic purposes, on the assumption that sneezing eliminates noxious factors from the body, mainly from the head. The present contribution examines the various mixtures used for inducing sneezes (remedia sternutatoria) over the centuries. The majority of the constituents of the sneeze-inducing remedies are modulators of transient receptor potential (TRP) channels. The TRP channel superfamily consists of large heterogeneous groups of channels that play numerous physiological roles such as thermosensation, chemosensation, osmosensation and mechanosensation. Sneezing is associated with the activation of the wasabi receptor, (TRPA1), typical ligand is allyl isothiocyanate and the hot chili pepper receptor, (TRPV1), typical agonist is capsaicin, in the vagal sensory nerve terminals, activated by noxious stimulants.


2019 ◽  
Vol 20 (6) ◽  
pp. 1380 ◽  
Author(s):  
Erik Behringer ◽  
Md Hakim

Effective delivery of oxygen and essential nutrients to vital organs and tissues throughout the body requires adequate blood flow supplied through resistance vessels. The intimate relationship between intracellular calcium ([Ca2+]i) and regulation of membrane potential (Vm) is indispensable for maintaining blood flow regulation. In particular, Ca2+-activated K+ (KCa) channels were ascertained as transducers of elevated [Ca2+]i signals into hyperpolarization of Vm as a pathway for decreasing vascular resistance, thereby enhancing blood flow. Recent evidence also supports the reverse role for KCa channels, in which they facilitate Ca2+ influx into the cell interior through open non-selective cation (e.g., transient receptor potential; TRP) channels in accord with robust electrical (hyperpolarization) and concentration (~20,000-fold) transmembrane gradients for Ca2+. Such an arrangement supports a feed-forward activation of Vm hyperpolarization while potentially boosting production of nitric oxide. Furthermore, in vascular types expressing TRP channels but deficient in functional KCa channels (e.g., collecting lymphatic endothelium), there are profound alterations such as downstream depolarizing ionic fluxes and the absence of dynamic hyperpolarizing events. Altogether, this review is a refined set of evidence-based perspectives focused on the role of the endothelial KCa and TRP channels throughout multiple experimental animal models and vascular types. We discuss the diverse interactions among KCa and TRP channels to integrate Ca2+, oxidative, and electrical signaling in the context of cardiovascular physiology and pathology. Building from a foundation of cellular biophysical data throughout a wide and diverse compilation of significant discoveries, a translational narrative is provided for readers toward the treatment and prevention of chronic, age-related cardiovascular disease.


2020 ◽  
Vol 295 (29) ◽  
pp. 9986-9997
Author(s):  
Nicholas W. Zaccor ◽  
Charlotte J. Sumner ◽  
Solomon H. Snyder

G-protein–coupled receptors (GPCRs) are a ubiquitously expressed family of receptor proteins that regulate many physiological functions and other proteins. They act through two dissociable signaling pathways: the exchange of GDP to GTP by linked G-proteins and the recruitment of β-arrestins. GPCRs modulate several members of the transient receptor potential (TRP) channel family of nonselective cation channels. How TRP channels reciprocally regulate GPCR signaling is less well-explored. Here, using an array of biochemical approaches, including immunoprecipitation and fluorescence, calcium imaging, phosphate radiolabeling, and a β-arrestin–dependent luciferase assay, we characterize a GPCR–TRP channel pair, angiotensin II receptor type 1 (AT1R), and transient receptor potential vanilloid 4 (TRPV4), in primary murine choroid plexus epithelial cells and immortalized cell lines. We found that AT1R and TRPV4 are binding partners and that activation of AT1R by angiotensin II (ANGII) elicits β-arrestin–dependent inhibition and internalization of TRPV4. Activating TRPV4 with endogenous and synthetic agonists inhibited angiotensin II–mediated G-protein–associated second messenger accumulation, AT1R receptor phosphorylation, and β-arrestin recruitment. We also noted that TRPV4 inhibits AT1R phosphorylation by activating the calcium-activated phosphatase calcineurin in a Ca2+/calmodulin–dependent manner, preventing β-arrestin recruitment and receptor internalization. These findings suggest that when TRP channels and GPCRs are co-expressed in the same tissues, many of these channels can inhibit GPCR desensitization.


2011 ◽  
Vol 300 (6) ◽  
pp. R1494-R1505 ◽  
Author(s):  
Noriyuki Mori ◽  
Fuminori Kawabata ◽  
Shigenobu Matsumura ◽  
Hiroshi Hosokawa ◽  
Shigeo Kobayashi ◽  
...  

The transient receptor potential (TRP) channel family is composed of a wide variety of cation-permeable channels activated polymodally by various stimuli and is implicated in a variety of cellular functions. Recent investigations have revealed that activation of TRP channels is involved not only in nociception and thermosensation but also in thermoregulation and energy metabolism. We investigated the effect of intragastric administration of TRP channel agonists on changes in energy substrate utilization of mice. Intragastric administration of allyl isothiocyanate (AITC; a typical TRPA1 agonist) markedly increased carbohydrate oxidation but did not affect oxygen consumption. To examine whether TRP channels mediate this increase in carbohydrate oxidation, we used TRPA1 and TRPV1 knockout (KO) mice. Intragastric administration of AITC increased carbohydrate oxidation in TRPA1 KO mice but not in TRPV1 KO mice. Furthermore, AITC dose-dependently increased intracellular calcium ion concentration in cells expressing TRPV1. These findings suggest that AITC might activate TRPV1 and that AITC increased carbohydrate oxidation via TRPV1.


2003 ◽  
Vol 371 (3) ◽  
pp. 1045-1053 ◽  
Author(s):  
Inka HEINER ◽  
Jörg EISFELD ◽  
Christian R. HALASZOVICH ◽  
Edith WEHAGE ◽  
Eberhard JÜNGLING ◽  
...  

An early key event in the activation of neutrophil granulocytes is Ca2+ influx. Members of the transient receptor potential (TRP) channel family may be held responsible for this. The aim of the present study is to analyse the expression pattern of TRP mRNA and identify characteristic currents unambiguously attributable to particular TRP channels. mRNA was extracted from human neutrophils, isolated by gradient centrifugation and also by magnetically labelled CD15 antibodies. The presence of mRNA was demonstrated using reverse transcriptase–PCR in neutrophils (controlled to be CD5-negative) as well as in human leukaemic cell line 60 (HL-60) cells, for the following TRP species: the long TRPC2 (LTRPC2), the vanilloid receptor 1, the vanilloid receptor-like protein 1 and epithelial Ca2+ channels 1 and 2. TRPC6 was specific for neutrophils, whereas only in HL-60 cells were TRPC1, TRPC2, TRPC3, melastatin 1 and melastatin-related 1 found. Patch-clamp measurements in neutrophils revealed non-selective cation currents evoked by intracellular ADP-ribose and by NAD+. Both these modes of activation have been found to be characteristic of LTRPC2. Furthermore, single-channel activity was resolved in neutrophils and it was indistinguishable from that in LTRPC2-transfected HEK-293 cells. The results provide evidence that LTRPC2 in neutrophil granulocytes forms an entry pathway for Na+ and Ca2+, which is regulated by ADP-ribose and the redox state.


2017 ◽  
Vol 312 (6) ◽  
pp. G635-G648 ◽  
Author(s):  
Dafne Balemans ◽  
Guy E. Boeckxstaens ◽  
Karel Talavera ◽  
Mira M. Wouters

Visceral hypersensitivity is an important mechanism underlying increased abdominal pain perception in functional gastrointestinal disorders including functional dyspepsia, irritable bowel syndrome, and inflammatory bowel disease in remission. Although the exact pathophysiological mechanisms are poorly understood, recent studies described upregulation and altered functions of nociceptors and their signaling pathways in aberrant visceral nociception, in particular the transient receptor potential (TRP) channel family. A variety of TRP channels are present in the gastrointestinal tract (TRPV1, TRPV3, TRPV4, TRPA1, TRPM2, TRPM5, and TRPM8), and modulation of their function by increased activation or sensitization (decreased activation threshold) or altered expression in visceral afferents have been reported in visceral hypersensitivity. TRP channels directly detect or transduce osmotic, mechanical, thermal, and chemosensory stimuli. In addition, pro-inflammatory mediators released in tissue damage or inflammation can activate receptors of the G protein-coupled receptor superfamily leading to TRP channel sensitization and activation, which amplify pain and neurogenic inflammation. In this review, we highlight the present knowledge on the functional roles of neuronal TRP channels in visceral hypersensitivity and discuss the signaling pathways that underlie TRP channel modulation. We propose that a better understanding of TRP channels and their modulators may facilitate the development of more selective and effective therapies to treat visceral hypersensitivity.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2417
Author(s):  
Elout Van Liefferinge ◽  
Noémie Van Noten ◽  
Jeroen Degroote ◽  
Gunther Vrolix ◽  
Mario Van Poucke ◽  
...  

Transient receptor potential (TRP) channels contribute to sensory transduction in the body, agonized by a variety of stimuli, such as phytochemicals, and they are predominantly distributed in afferent neurons. Evidence indicates their expression in non-neuronal cells, demonstrating their ability to modulate gastrointestinal function. Targeting TRP channels could potentially be used to regulate gastrointestinal secretion and motility, yet their expression in the pig is unknown. This study investigated TRPA1 and TRPV1 expression in different gut locations of piglets of varying age. Colocalization with enteroendocrine cells was established by immunohistochemistry. Both channels were expressed in the gut mucosa. TRPV1 mRNA abundance increased gradually in the stomach and small intestine with age, most notably in the distal small intestine. In contrast, TRPA1 exhibited sustained expression across ages and locations, with the exception of higher expression in the pylorus at weaning. Immunohistochemistry confirmed the endocrine nature of both channels, showing the highest frequency of colocalization in enteroendocrine cells for TRPA1. Specific co-localization on GLP-1 immunoreactive cells indicated their possible role in GLP-1 release and the concomitant intestinal feedback mechanism. Our results indicate that TRPA1 and TRPV1 could play a role in gut enteroendocrine activity. Moreover, age and location in the gut significantly affected gene expression.


2019 ◽  
Vol 20 (14) ◽  
pp. 3411 ◽  
Author(s):  
Yasunori Takayama ◽  
Sandra Derouiche ◽  
Kenta Maruyama ◽  
Makoto Tominaga

Receptor-type ion channels are critical for detection of noxious stimuli in primary sensory neurons. Transient receptor potential (TRP) channels mediate pain sensations and promote a variety of neuronal signals that elicit secondary neural functions (such as calcitonin gene-related peptide [CGRP] secretion), which are important for physiological functions throughout the body. In this review, we focus on the involvement of TRP channels in sensing acute pain, inflammatory pain, headache, migraine, pain due to fungal infections, and osteo-inflammation. Furthermore, action potentials mediated via interactions between TRP channels and the chloride channel, anoctamin 1 (ANO1), can also generate strong pain sensations in primary sensory neurons. Thus, we also discuss mechanisms that enhance neuronal excitation and are dependent on ANO1, and consider modulation of pain sensation from the perspective of both cation and anion dynamics.


2018 ◽  
Vol 11 (4) ◽  
pp. 105 ◽  
Author(s):  
Tabitha Galindo ◽  
Jose Reyna ◽  
Andy Weyer

Based on clinical and preclinical evidence, Transient Receptor Potential (TRP) channels have emerged as potential drug targets for the treatment of osteoarthritis, rheumatoid arthritis, and gout. This review summarizes the relevant data supporting a role for various TRP channels in arthritis pain and pathogenesis, as well as the current state of pharmacological efforts to ameliorate arthritis symptoms in patient populations.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Luke L. McGoldrick ◽  
Appu K. Singh ◽  
Lusine Demirkhanyan ◽  
Ting-Yu Lin ◽  
Ryan G. Casner ◽  
...  

Abstract Algae produce the largest amount of oxygen on earth and are invaluable for human nutrition and biomedicine, as well as for the chemical industry, energy production and agriculture. The mechanisms by which algae can detect and respond to changes in their environments can rely on membrane receptors, including TRP ion channels. Here we present a 3.5-Å resolution cryo-EM structure of the transient receptor potential (TRP) channel crTRP1 from the alga Chlamydomonas reinhardtii that opens in response to increased temperature and is positively regulated by the membrane lipid PIP2. The structure of crTRP1 significantly deviates from the structures of other TRP channels and has a unique 2-fold symmetrical rose-shape architecture with elbow domains and ankyrin repeat domains submerged and dipping into the membrane, respectively. Our study provides a structure of a TRP channel from a micro-organism and a structural framework for better understanding algae biology and TRP channel evolution.


Sign in / Sign up

Export Citation Format

Share Document