scholarly journals Long-Term Effects of Polystyrene Nanoplastics in Human Intestinal Caco-2 Cells

Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1442
Author(s):  
Josefa Domenech ◽  
Mariana de Britto ◽  
Antonia Velázquez ◽  
Susana Pastor ◽  
Alba Hernández ◽  
...  

The increasing presence of micro- and nanoplastics (MNPLs) in the environment, and their consequent accumulation in trophic niches, could pose a potential health threat to humans, especially due to their chronic ingestion. In vitro studies using human cells are considered pertinent approaches to determine potential health risks to humans. Nevertheless, most of such studies have been conducted using short exposure times and high concentrations. Since human exposure to MNPLs is supposed to be chronic, there is a lack of information regarding the potential in vitro MNPLs effects under chronic exposure conditions. To this aim, we assessed the accumulation and potential outcomes of polystyrene nanoparticles (PSNPs), as a model of MNPLs, in undifferentiated Caco-2 cells (as models of cell target in ingestion exposures) under a relevant long-term exposure scenario, consisting of eight weeks of exposure to sub-toxic PSNPs concentrations. In such exposure conditions, culture-media was changed every 2–3 days to maintain constant exposure. The different analyzed endpoints were cytotoxicity, dysregulation of stress-related genes, genotoxicity, oxidative DNA damage, and intracellular ROS levels. These are endpoints that showed to be sensitive enough in different studies. The obtained results attest that PSNPs accumulate in the cells through time, inducing changes at the ultrastructural and molecular levels. Nevertheless, minor changes in the different evaluated genotoxicity-related biomarkers were observed. This would indicate that no DNA damage or oxidative stress is observed in the human intestinal Caco-2 cells after long-term exposure to PSNPs. This is the first study dealing with the long-term effects of PSNPs on human cultured cells.

Materials ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 1427 ◽  
Author(s):  
Agmal Scherzad ◽  
Till Meyer ◽  
Norbert Kleinsasser ◽  
Stephan Hackenberg

Background: Zinc oxide nanoparticles (ZnO NPs) are among the most frequently applied nanomaterials in consumer products. Evidence exists regarding the cytotoxic effects of ZnO NPs in mammalian cells; however, knowledge about the potential genotoxicity of ZnO NPs is rare, and results presented in the current literature are inconsistent. Objectives: The aim of this review is to summarize the existing data regarding the DNA damage that ZnO NPs induce, and focus on the possible molecular mechanisms underlying genotoxic events. Methods: Electronic literature databases were systematically searched for studies that report on the genotoxicity of ZnO NPs. Results: Several methods and different endpoints demonstrate the genotoxic potential of ZnO NPs. Most publications describe in vitro assessments of the oxidative DNA damage triggered by dissoluted Zn2+ ions. Most genotoxicological investigations of ZnO NPs address acute exposure situations. Conclusion: Existing evidence indicates that ZnO NPs possibly have the potential to damage DNA. However, there is a lack of long-term exposure experiments that clarify the intracellular bioaccumulation of ZnO NPs and the possible mechanisms of DNA repair and cell survival.


Author(s):  
Evelyne París-Oller ◽  
Cristina Soriano-Úbeda ◽  
Ramsés Belda-Pérez ◽  
Lucía Sarriás-Gil ◽  
Jordana S. Lopes ◽  
...  

Abstract The addition of reproductive fluids (RF) to the culture media has shown benefits in different embryonic traits but its long-term effects on the offspring phenotype are still unknown. We aimed to describe such effects in pigs. Blood samples and growth parameters were collected from piglets derived from in vitro-produced embryos (IVP) with or without RF added in the culture media versus those artificially inseminated (AI), from day 0 to month 6 of life. An oral glucose tolerance test was performed on day 45 of life. We show here the first comparative data of the growth of animals produced through different assisted reproductive techniques, demonstrating differences between groups. Overall, there was a tendency to have a larger size at birth and faster growth in animals derived from in vitro fertilization and embryo culture versus AI, although this trend was diminished by the addition of RFs to the culture media. Similarly, small differences in hematological indices and glucose tolerance between animals derived from AI and those derived from IVP, with a sex-dependent effect, tended to fade in the presence of RF. The addition of RF to the culture media could contribute to minimizing the phenotypical differences between the in vitro-derived and AI offspring, particularly in males.


2019 ◽  
Vol 45 (6) ◽  
pp. 1399-1409
Author(s):  
Nafisa Ferdous ◽  
Sirisha Kudumala ◽  
Serena Sossi ◽  
Lucia Carvelli

AbstractAmphetamine (AMPH) is a systemic stimulant used to treat a variety of diseases including Attention Deficit Hyperactive Disorder, narcolepsy and obesity. Previous data showed that by binding to catecholamine transporters, AMPH prevents the reuptake of the neurotransmitters dopamine (DA) and norepinephrine (NE). Because AMPH, either used therapeutically at final concentrations of 1–10 µM or abused as recreational drug (50–200 µM), is taken over long periods of time, we investigated the prolonged effects of this drug on the uptake of DA. We found that, in LLC-PK1 cells stably expressing the human DA transporter (hDAT), pretreatments with 1 or 50 µM AMPH caused significant reduction in DA uptake right after the 15-h pretreatment. Remarkably, after 50 but not 1 µM AMPH pretreatment, we observed a significant reduction in DA uptake also after one, two or three cell divisions. To test whether these long-term effects induced by AMPH where conserved in a model comparable to primordial neuronal cells and native neurons, we used the human neuroblastoma cell line SH-SY5Y cells, which were reported to endogenously express both hDAT and the NE transporter. Pretreatments with 50 µM AMPH caused a significant reduction of DA uptake both right after 15 h and 3 cell divisions followed by neuro-differentiation with retinoic acid (RA) for 5 days. Under these same conditions, AMPH did not change the intracellular concentrations of ATP, ROS and cell viability suggesting, therefore, that the reduction in DA uptake was not cause by AMPH-induced toxicity. Interestingly, while 1 µM AMPH did not cause long-term effects in the LLC-PK1 cells, in the SH-SY5Y cells, it decreased the DA uptake after one, two, but not three, cell divisions and 5-day RA differentiation. These data show that besides the well-known acute effects, AMPH can also produce long-term effects in vitro that are maintained during cell division and transmitted to the daughter cells.


2021 ◽  
Author(s):  
Ricard Marcos ◽  
Irene Barguilla ◽  
Josefa Domenech ◽  
Laura Rubio ◽  
Alba Hernández

Abstract Background The increasing accumulation of plastic waste and the widespread presence of its derivatives, micro- and nanoplastics (MNPLs), call for an urgent evaluation of their potential health risks. In the environment, MNPLs coexist with other known hazardous contaminants and, thus, an interesting question arises as to whether MNPLs can act as carriers of such pollutants, modulating their uptake and their harmful effects. In this context, we have examined the interaction and joint effects of two relevant water contaminants: arsenic and polystyrene nanoplastics (PSNPLs), this last being a model of nanoplastic. Methods Since both agents are persistent pollutants, the potential effects have been evaluated under a chronic exposure scenario and measuring different effect biomarkers involved in the cell transformation process. Thus, cells previously transformed by chronic arsenic exposure were further exposed to PSNPLs, arsenic, and the combination PSNPLs/arsenic for 12 weeks. Results Interestingly, a physical interaction between both pollutants was demonstrated by using TEM/EDX methodologies. Results also indicate that the continuous co-exposure enhances the DNA damage and the aggressive features of the initially transformed phenotype. Remarkably, co-exposed cells present a higher proportion of spindle-like cells within the population, an increased capacity to grow independently of anchorage, as well as enhanced migrating and invading potentials when compared to cells exposed to arsenic or PSNPLs alone. Conclusions This study highlights the need for further studies exploring the long-term effects of contaminants of emerging concern such as MNPLs, and the importance of considering the behavior of mixtures as part of the hazard and human risk assessment approaches.


Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 632-638 ◽  
Author(s):  
Louise Cragg ◽  
Robert P. Hebbel ◽  
Wesley Miller ◽  
Alex Solovey ◽  
Scott Selby ◽  
...  

Abstract Iron-mediated carcinogenesis is thought to occur through the generation of oxygen radicals. Iron chelators are used in attempts to prevent the long term consequences of iron overload. In particular, 1,2-dimethyl-3-hydroxypyrid-4-one (L1), has shown promise as an effective chelator. Using an established hepatocellular model of iron overload, we studied the generation of iron-catalyzed oxidative DNA damage and the influence of iron chelators, including L1, on such damage. Iron loading of HepG2 cells was found to greatly exacerbate hydrogen peroxide–mediated DNA damage. Desferrithiocin was protective against iron/hydrogen peroxide–induced DNA damage; deferoxamine had no effect. In contrast, L1 exposure markedly potentiated hydrogen peroxide–mediated oxidative DNA damage in iron-loaded liver cells. However, when exposure to L1 was maintained during incubation with hydrogen peroxide, L1 exerted a protective effect. We interpret this as indicating that L1's potential toxicity is highly dependent on the L1:iron ratio. In vitro studies examining iron-mediated ascorbate oxidation in the presence of L1 showed that an L1:iron ratio must be at least 3 to 1 for L1 to inhibit the generation of free radicals; at lower concentrations of L1 increased oxygen radical generation occurs. In the clinical setting, such potentiation of iron-catalyzed oxidative DNA damage at low L1:iron ratios may lead to long-term toxicities that might preclude administration of L1 as an iron chelator. Whether this implication in fact extends to the in vivo situation will have to be verified in animal studies.


Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 632-638 ◽  
Author(s):  
Louise Cragg ◽  
Robert P. Hebbel ◽  
Wesley Miller ◽  
Alex Solovey ◽  
Scott Selby ◽  
...  

Iron-mediated carcinogenesis is thought to occur through the generation of oxygen radicals. Iron chelators are used in attempts to prevent the long term consequences of iron overload. In particular, 1,2-dimethyl-3-hydroxypyrid-4-one (L1), has shown promise as an effective chelator. Using an established hepatocellular model of iron overload, we studied the generation of iron-catalyzed oxidative DNA damage and the influence of iron chelators, including L1, on such damage. Iron loading of HepG2 cells was found to greatly exacerbate hydrogen peroxide–mediated DNA damage. Desferrithiocin was protective against iron/hydrogen peroxide–induced DNA damage; deferoxamine had no effect. In contrast, L1 exposure markedly potentiated hydrogen peroxide–mediated oxidative DNA damage in iron-loaded liver cells. However, when exposure to L1 was maintained during incubation with hydrogen peroxide, L1 exerted a protective effect. We interpret this as indicating that L1's potential toxicity is highly dependent on the L1:iron ratio. In vitro studies examining iron-mediated ascorbate oxidation in the presence of L1 showed that an L1:iron ratio must be at least 3 to 1 for L1 to inhibit the generation of free radicals; at lower concentrations of L1 increased oxygen radical generation occurs. In the clinical setting, such potentiation of iron-catalyzed oxidative DNA damage at low L1:iron ratios may lead to long-term toxicities that might preclude administration of L1 as an iron chelator. Whether this implication in fact extends to the in vivo situation will have to be verified in animal studies.


Author(s):  
D.E. Loudy ◽  
J. Sprinkle-Cavallo ◽  
J.T. Yarrington ◽  
F.Y. Thompson ◽  
J.P. Gibson

Previous short term toxicological studies of one to two weeks duration have demonstrated that MDL 19,660 (5-(4-chlorophenyl)-2,4-dihydro-2,4-dimethyl-3Hl, 2,4-triazole-3-thione), an antidepressant drug, causes a dose-related thrombocytopenia in dogs. Platelet counts started to decline after two days of dosing with 30 mg/kg/day and continued to decrease to their lowest levels by 5-7 days. The loss in platelets was primarily of the small discoid subpopulation. In vitro studies have also indicated that MDL 19,660: does not spontaneously aggregate canine platelets and has moderate antiaggregating properties by inhibiting ADP-induced aggregation. The objectives of the present investigation of MDL 19,660 were to evaluate ultrastructurally long term effects on platelet internal architecture and changes in subpopulations of platelets and megakaryocytes.Nine male and nine female beagle dogs were divided equally into three groups and were administered orally 0, 15, or 30 mg/kg/day of MDL 19,660 for three months. Compared to a control platelet range of 353,000- 452,000/μl, a doserelated thrombocytopenia reached a maximum severity of an average of 135,000/μl for the 15 mg/kg/day dogs after two weeks and 81,000/μl for the 30 mg/kg/day dogs after one week.


2020 ◽  
Vol 295 (38) ◽  
pp. 13314-13325
Author(s):  
Yanyu Zhu ◽  
James C. Weisshaar ◽  
Mainak Mustafi

Proline-rich antimicrobial peptides (PrAMPs) are cationic antimicrobial peptides unusual for their ability to penetrate bacterial membranes and kill cells without causing membrane permeabilization. Structural studies show that many such PrAMPs bind deep in the peptide exit channel of the ribosome, near the peptidyl transfer center. Biochemical studies of the particular synthetic PrAMP oncocin112 (Onc112) suggest that on reaching the cytoplasm, the peptide occupies its binding site prior to the transition from initiation to the elongation phase of translation, thus blocking further initiation events. We present a superresolution fluorescence microscopy study of the long-term effects of Onc112 on ribosome, elongation factor-Tu (EF-Tu), and DNA spatial distributions and diffusive properties in intact Escherichia coli cells. The new data corroborate earlier mechanistic inferences from studies in vitro. Comparisons with the diffusive behavior induced by the ribosome-binding antibiotics chloramphenicol and kasugamycin show how the specific location of each agent's ribosomal binding site affects the long-term distribution of ribosomal species between 30S and 50S subunits versus 70S polysomes. Analysis of the single-step displacements from ribosome and EF-Tu diffusive trajectories before and after Onc112 treatment suggests that the act of codon testing of noncognate ternary complexes (TCs) at the ribosomal A-site enhances the dissociation rate of such TCs from their L7/L12 tethers. Testing and rejection of noncognate TCs on a sub-ms timescale is essential to enable incorporation of the rare cognate amino acids into the growing peptide chain at a rate of ∼20 aa/s.


Sign in / Sign up

Export Citation Format

Share Document