scholarly journals Comprehensive Atlas of the Myelin Basic Protein Interaction Landscape

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1628
Author(s):  
Evgeniya V. Smirnova ◽  
Tatiana V. Rakitina ◽  
Rustam H. Ziganshin ◽  
Georgij P. Arapidi ◽  
George A. Saratov ◽  
...  

Intrinsically disordered myelin basic protein (MBP) is one of the key autoantigens in autoimmune neurodegeneration and multiple sclerosis particularly. MBP is highly positively charged and lacks distinct structure in solution and therefore its intracellular partners are still mostly enigmatic. Here we used combination of formaldehyde-induced cross-linking followed by immunoprecipitation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate the interaction network of MBP in mammalian cells and provide the list of potential MBP interacting proteins. Our data suggest that the largest group of MBP-interacting proteins belongs to cellular proteins involved in the protein translation machinery, as well as in the spatial and temporal regulation of translation. MBP interacts with core ribosomal proteins, RNA helicase Ddx28 and RNA-binding proteins STAU1, TDP-43, ADAR-1 and hnRNP A0, which are involved in various stages of RNA biogenesis and processing, including specific maintaining MBP-coding mRNA. Among MBP partners we identified CTNND1, which has previously been shown to be necessary for myelinating Schwann cells for cell-cell interactions and the formation of a normal myelin sheath. MBP binds proteins MAGEB2/D2 associated with neurotrophin receptor p75NTR, involved in pathways that promote neuronal survival and neuronal death. Finally, we observed that MBP interacts with RNF40–a component of heterotetrameric Rnf40/Rnf20 E3 ligase complex, recruited by Egr2, which is the central transcriptional regulator of peripheral myelination. Concluding, our data suggest that MBP may be more actively involved in myelination not only as a main building block but also as a self-regulating element.

2019 ◽  
Vol 19 (4) ◽  
pp. 255-263 ◽  
Author(s):  
Yuangang Wu ◽  
Xiaoxi Lu ◽  
Bin Shen ◽  
Yi Zeng

Background: Osteoarthritis (OA) is a disease characterized by progressive degeneration, joint hyperplasia, narrowing of joint spaces, and extracellular matrix metabolism. Recent studies have shown that the pathogenesis of OA may be related to non-coding RNA, and its pathological mechanism may be an effective way to reduce OA. Objective: The purpose of this review was to investigate the recent progress of miRNA, long noncoding RNA (lncRNA) and circular RNA (circRNA) in gene therapy of OA, discussing the effects of this RNA on gene expression, inflammatory reaction, apoptosis and extracellular matrix in OA. Methods: The following electronic databases were searched, including PubMed, EMBASE, Web of Science, and the Cochrane Library, for published studies involving the miRNA, lncRNA, and circRNA in OA. The outcomes included the gene expression, inflammatory reaction, apoptosis, and extracellular matrix. Results and Discussion: With the development of technology, miRNA, lncRNA, and circRNA have been found in many diseases. More importantly, recent studies have found that RNA interacts with RNA-binding proteins to regulate gene transcription and protein translation, and is involved in various pathological processes of OA, thus becoming a potential therapy for OA. Conclusion: In this paper, we briefly introduced the role of miRNA, lncRNA, and circRNA in the occurrence and development of OA and as a new target for gene therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Haiyan Shen ◽  
Guomin Luo ◽  
Qingjuan Chen

AbstractApproximately 338,000 patients are diagnosed with kidney cancer worldwide each year, and renal cell carcinoma (RCC), which is derived from renal epithelium, accounts for more than ninety percent of the malignancy. Next generation RNA sequencing has enabled the identification of novel long noncoding RNAs (lncRNAs) in the past 10 years. Recent studies have provided extensive evidence that lncRNAs bind to chromatin modification proteins, transcription factors, RNA-binding proteins and microRNAs, and thereby modulate gene expression through regulating chromatin status, gene transcription, pre-mRNA splicing, mRNA decay and stability, protein translation and stability. In vitro and in vivo studies have demonstrated that over-expression of oncogenic lncRNAs and silencing of tumor suppressive lncRNAs are a common feature of human RCC, and that aberrant lncRNA expression is a marker for poor patient prognosis, and is essential for the initiation and progression of RCC. Because lncRNAs, compared with mRNAs, are expressed in a tissue-specific manner, aberrantly expressed lncRNAs can be better targeted for the treatment of RCC through screening small molecule compounds which block the interaction between lncRNAs and their binding proteins or microRNAs.


2010 ◽  
Vol 88 (2) ◽  
pp. 143-155 ◽  
Author(s):  
David S. Libich ◽  
Mumdooh A.M. Ahmed ◽  
Ligang Zhong ◽  
Vladimir V. Bamm ◽  
Vladimir Ladizhansky ◽  
...  

The classic 18.5 kDa isoform of myelin basic protein (MBP) is central to maintaining the structural homeostasis of the myelin sheath of the central nervous system. It is an intrinsically disordered, promiscuous, multifunctional, peripheral membrane protein, whose conformation adapts to its particular environment. Its study requires the selective and complementary application of diverse approaches, of which solution and solid-state NMR spectroscopy are the most powerful to elucidate site-specific features. We review here several recent solution and solid-state NMR spectroscopic studies of 18.5 kDa MBP, and the induced partial disorder-to-order transitions that it has been demonstrated to undergo when complexed with calmodulin, actin, and phospholipid membranes.


2015 ◽  
Vol 472 (1) ◽  
pp. 17-32 ◽  
Author(s):  
Kenrick A. Vassall ◽  
Vladimir V. Bamm ◽  
George Harauz

The classic isoforms of myelin basic protein (MBP, 14–21.5 kDa) are essential to formation of the multilamellar myelin sheath of the mammalian central nervous system (CNS). The predominant 18.5-kDa isoform links together the cytosolic surfaces of oligodendrocytes, but additionally participates in cytoskeletal turnover and membrane extension, Fyn-mediated signalling pathways, sequestration of phosphoinositides and maintenance of calcium homoeostasis. All MBP isoforms are intrinsically disordered proteins (IDPs) that interact via molecular recognition fragments (MoRFs), which thereby undergo local disorder-to-order transitions. Their conformations and associations are modulated by environment and by a dynamic barcode of post-translational modifications, particularly phosphorylation by mitogen-activated and other protein kinases and deimination [a hallmark of demyelination in multiple sclerosis (MS)]. The MBPs are thus to myelin what basic histones are to chromatin. Originally thought to be merely structural proteins forming an inert spool, histones are now known to be dynamic entities involved in epigenetic regulation and diseases such as cancer. Analogously, the MBPs are not mere adhesives of compact myelin, but active participants in oligodendrocyte proliferation and in membrane process extension and stabilization during myelinogenesis. A central segment of these proteins is pivotal in membrane-anchoring and SH3 domain (Src homology 3) interaction. We discuss in the present review advances in our understanding of conformational conversions of this classic basic protein upon membrane association, including new thermodynamic analyses of transitions into different structural ensembles and how a shift in the pattern of its post-translational modifications is associated with the pathogenesis and potentially onset of demyelination in MS.


1995 ◽  
Vol 108 (8) ◽  
pp. 2781-2790 ◽  
Author(s):  
E. Barbarese ◽  
D.E. Koppel ◽  
M.P. Deutscher ◽  
C.L. Smith ◽  
K. Ainger ◽  
...  

The intracellular distribution of various components of the protein translational machinery was visualized in mouse oligodendrocytes in culture using high resolution fluorescence in situ hybridization and immunofluorescence in conjunction with dual channel confocal laser scanning microscopy. Arginyl-tRNA synthetase, elongation factor 1a, ribosomal RNA, and myelin basic protein mRNA were all co-localized in granules in the processes, veins and membrane sheets of the cell. Colocalization was evaluated by dual channel cross correlation analysis to determine the correlation index (% colocalization) and correlation distance (granule radius), and by single granule ratiometric analysis to determine the distribution of the different components in individual granules. Most granules contained synthetase, elongation factor, ribosomal RNA and myelin basic protein mRNA. These results indicate that several different components of the protein synthetic machinery, including aminoacyl-tRNA synthetases, elongation factors, ribosomes and mRNAs, are colocalized in granules in oligodendrocytes. We propose that these granules are supramolecular complexes containing all of the necessary macromolecular components for protein translation and that they represent a heretofore undescribed subcellular organization of the protein synthetic machinery. This spatial organization may increase the efficiency of protein synthesis and may also provide a vehicle for transport and localization of specific mRNAs within the cell.


2022 ◽  
Vol 8 ◽  
Author(s):  
Ahmed Salem ◽  
Carter J. Wilson ◽  
Benjamin S. Rutledge ◽  
Allison Dilliott ◽  
Sali Farhan ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of both upper and lower motor neurons in the brain and spinal cord. ALS is associated with protein misfolding and inclusion formation involving RNA-binding proteins, including TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS). The 125-kDa Matrin3 is a highly conserved nuclear DNA/RNA-binding protein that is implicated in many cellular processes, including binding and stabilizing mRNA, regulating mRNA nuclear export, modulating alternative splicing, and managing chromosomal distribution. Mutations in MATR3, the gene encoding Matrin3, have been identified as causal in familial ALS (fALS). Matrin3 lacks a prion-like domain that characterizes many other ALS-associated RNA-binding proteins, including TDP-43 and FUS, however, our bioinformatics analyses and preliminary studies document that Matrin3 contains long intrinsically disordered regions that may facilitate promiscuous interactions with many proteins and may contribute to its misfolding. In addition, these disordered regions in Matrin3 undergo numerous post-translational modifications, including phosphorylation, ubiquitination and acetylation that modulate the function and misfolding of the protein. Here we discuss the disordered nature of Matrin3 and review the factors that may promote its misfolding and aggregation, two elements that might explain its role in ALS pathogenesis.


2018 ◽  
Author(s):  
Zhizhou Ye ◽  
Donald E. Ayer

ABSTRACTOncogenic Ras upregulates aerobic glycolysis to meet the bioenergetic and biosynthetic demands of rapidly growing cells. In contrast, Thioredoxin interacting protein (TXNIP) is a potent inhibitor of glucose uptake and is frequently downregulated in human cancers. Our lab previously discovered that Ras activation suppresses TXNIP transcription and translation. In this report, we developed a system to study how Ras affects TXNIP translation in the absence of transcriptional affects. We show that whereas Ras drives a global increase in protein translation, it suppresses TXNIP protein synthesis by reducing the rate at which ribosomes transit the coding region of TXNIP mRNA. To investigate the underlying mechanism(s), we randomized or optimized the codons in the TXNIP message without altering the TXNIP primary amino acid sequence. Translation from these mRNA variants is still repressed by Ras, intimating that mRNA secondary structure, miRNAs, RNA binding proteins, or codon usage do not contribute to the blockade of TXNIP synthesis. Rather, we show that the N-terminus of the growing TXNIP polypeptide is the target for Ras-dependent translational repression. Our work demonstrates how Ras suppresses TXNIP translation elongation in the face of a global upregulation of protein synthesis and provides new insight into Ras-dependent metabolic reprogramming.


Sign in / Sign up

Export Citation Format

Share Document