scholarly journals New Insights into the Role of Cysteine Cathepsins in Neuroinflammation

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1796
Author(s):  
Anja Pišlar ◽  
Lara Bolčina ◽  
Janko Kos

Neuroinflammation, which is mediated by microglia and astrocytes, is associated with the progression of neurodegenerative diseases. Increasing evidence shows that activated microglia induce the expression and secretion of various lysosomal cathepsins, particularly during the early stage of neuroinflammation. This trigger signaling cascade that aggravate neurodegeneration. To date, most research on neuroinflammation has focused on the role of cysteine cathepsins, the largest cathepsin family. Cysteine cathepsins are primarily responsible for protein degradation in lysosomes; however, they also play a role in regulating a number of other important physiological and pathological processes. This review focuses on the functional roles of cysteine cathepsins in the central nervous system during neuroinflammation, with an emphasis on their roles in the polarization of microglia and neuroinflammation signaling, which in turn causes neuronal death and thus neurodegeneration.

2020 ◽  
Vol 8 (2) ◽  
pp. 130-146
Author(s):  
Afshin Montazeri ◽  
Milad Akhlaghi ◽  
Ahmad Reza Barahimi ◽  
Ali Jahanbazi Jahan Abad ◽  
Reza Jabbari ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Daniel Juárez-Rebollar ◽  
Camilo Rios ◽  
Concepción Nava-Ruíz ◽  
Marisela Méndez-Armenta

Metallothioneins are a family of proteins which are able to bind metals intracellularly, so their main function is to regulate the cellular metabolism of essential metals. There are 4 major isoforms of MTs (I–IV), three of which have been localized in the central nervous system. MT-I and MT-II have been localized in the spinal cord and brain, mainly in astrocytes, whereas MT-III has been found mainly in neurons. MT-I and MT-II have been considered polyvalent proteins whose main function is to maintain cellular homeostasis of essential metals such as zinc and copper, but other functions have also been considered: detoxification of heavy metals, regulation of gene expression, processes of inflammation, and protection against free radicals generated by oxidative stress. On the other hand, the MT-III has been related in events of pathogenesis of neurodegenerative diseases such as Parkinson and Alzheimer. Likewise, the participation of MTs in other neurological disorders has also been reported. This review shows recent evidence about the role of MT in the central nervous system and its possible role in neurodegenerative diseases as well as in brain disorders.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 846 ◽  
Author(s):  
Oscar F. Sánchez ◽  
Andrea V. Rodríguez ◽  
José M. Velasco-España ◽  
Laura C. Murillo ◽  
Jhon-Jairo Sutachan ◽  
...  

Gap junction (GJ) channels and their connexins (Cxs) are complex proteins that have essential functions in cell communication processes in the central nervous system (CNS). Neurons, astrocytes, oligodendrocytes, and microglial cells express an extraordinary repertory of Cxs that are important for cell to cell communication and diffusion of metabolites, ions, neurotransmitters, and gliotransmitters. GJs and Cxs not only contribute to the normal function of the CNS but also the pathological progress of several diseases, such as cancer and neurodegenerative diseases. Besides, they have important roles in mediating neuroprotection by internal or external molecules. However, regulation of Cx expression by epigenetic mechanisms has not been fully elucidated. In this review, we provide an overview of the known mechanisms that regulate the expression of the most abundant Cxs in the central nervous system, Cx30, Cx36, and Cx43, and their role in brain cancer, CNS disorders, and neuroprotection. Initially, we focus on describing the Cx gene structure and how this is regulated by epigenetic mechanisms. Then, the posttranslational modifications that mediate the activity and stability of Cxs are reviewed. Finally, the role of GJs and Cxs in glioblastoma, Alzheimer’s, Parkinson’s, and Huntington’s diseases, and neuroprotection are analyzed with the aim of shedding light in the possibility of using Cx regulators as potential therapeutic molecules.


2021 ◽  
Vol 22 (9) ◽  
pp. 4630
Author(s):  
Agnieszka Kulczyńska-Przybik ◽  
Piotr Mroczko ◽  
Maciej Dulewicz ◽  
Barbara Mroczko

Reticulons (RTNs) are crucial regulatory factors in the central nervous system (CNS) as well as immune system and play pleiotropic functions. In CNS, RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. Moreover, RTNs, particularly RTN4 and RTN3, are involved in neurodegeneration and neuroinflammation processes. The crucial role of RTNs in the development of several neurodegenerative diseases, including Alzheimer’s disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or other neurological conditions such as brain injury or spinal cord injury, has attracted scientific interest. Reticulons, particularly RTN-4A (Nogo-A), could provide both an understanding of early pathogenesis of neurodegenerative disorders and be potential therapeutic targets which may offer effective treatment or inhibit disease progression. This review focuses on the molecular mechanisms and functions of RTNs and their potential usefulness in clinical practice as a diagnostic tool or therapeutic strategy.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Arash Abdolmaleki ◽  
Sevin Ferdowsi ◽  
Asadollah Asadi ◽  
Yassin Panahi

Context: Neurodegenerative diseases (NDs) are neurological disorders characterized by the degeneration of the central nervous system (CNS). Studies have examined interactions between long non-coding RNAs (lncRNAs) and functioning of the CNS in NDs. In this study, we summarized the role of different lncRNAs in most NDs. Methods: In this study, different papers published between years 2003 and 2020 were reviewed. Results: LncRNAs can play a significant role in the development of brain disorders. Conclusions: The dysregulation of lncRNAs has been shown to affect NDs such as Alzheimer's disease (AD) and Parkinson’s diseases (PD). In this review, we compiled recent findings related to the main lncRNAs associated with brain disorders.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chen Yang ◽  
Yan Qi ◽  
Zhitang Sun

The Sonic hedgehog (SHH) pathway affects neurogenesis and neural patterning during the development of the central nervous system. Dysregulation of the SHH pathway in the brain contributes to aging-related neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. At present, the SHH signaling pathway can be divided into the canonical signaling pathway and non-canonical signaling pathway, which directly or indirectly mediates other related pathways involved in the development of neurodegenerative diseases. Hence, an in-depth knowledge of the SHH signaling pathway may open an avenue of possibilities for the treatment of neurodegenerative diseases. Here, we summarize the role and mechanism of the SHH signaling pathway in the development of the central nervous system and aging-related neurodegenerative diseases. In this review, we will also highlight the potential of the SHH pathway as a therapeutic target for treating neurodegenerative diseases.


2020 ◽  
pp. 49-56
Author(s):  
T. Shirshova

Disorders of the musculoskeletal system in school-age children occupy 1-2 places in the structure of functional abnormalities. Cognitive impairment without organic damage to the central nervous system is detected in 30-56% of healthy school children. Along with the increase in the incidence rate, the demand for rehabilitation systems, which allow patients to return to normal life as soon as possible and maintain the motivation for the rehabilitation process, is also growing. Adaptation of rehabilitation techniques, ease of equipment management, availability of specially trained personnel and availability of technical support for complexes becomes important.


Sign in / Sign up

Export Citation Format

Share Document