scholarly journals Cell Wall Polysaccharide Composition of Grafted ‘Liberty’ Watermelon With Reduced Incidence of Hollow Heart Defect

2021 ◽  
Vol 12 ◽  
Author(s):  
Marlee A. Trandel ◽  
Suzanne Johanningsmeier ◽  
Jonathan Schultheis ◽  
Chris Gunter ◽  
Penelope Perkins-Veazie

Grafting watermelon scions to interspecific squash hybrids has been found to increase fruit firmness. Triploid (seedless) watermelon are prone to hollow heart (HH), an internal fruit disorder characterized by a crack in the placental tissue expanding to a cavity. Although watermelon with lower tissue firmness tend to have a higher HH incidence, associated differences in cell wall polysaccharide composition are unknown. Grafting “Liberty” watermelon to “Carnivor” (interspecific hybrid rootstock, C. moschata × C. maxima) reduced HH 39% and increased tissue firmness by 3 N. Fruit with and without severe HH from both grafted and non-grafted plants were analyzed to determine differences in cell wall polysaccharides associated with grafting and HH. Alcohol insoluble residues (AIR) were sequentially extracted from placental tissue to yield water soluble (WSF), carbonate soluble (CSF), alkali soluble (ASF), or unextractable (UNX) pectic fractions. The CSF was lower in fruit with HH (24.5%) compared to those without HH (27.1%). AIRs were also reduced, hydrolyzed, and acetylated for GC-MS analysis of monosaccharide composition, and a portion of each AIR was methylated prior to hydrolysis and acetylation to produce partially methylated alditol acetates for polysaccharide linkage assembly. No differences in degree of methylation or galacturonic and glucuronic acid concentrations were found. Glucose and galactose were in highest abundance at 75.9 and 82.4 μg⋅mg–1 AIR, respectively, followed by xylose and arabinose (29.3 and 22.0 μg⋅mg–1). Mannose was higher in fruit with HH (p < 0.05) and xylose was highest in fruit from grafted plants (p < 0.05). Mannose is primarily found in heteromannan and rhamnogalacturonan I side chains, while xylose is found in xylogalacturonan or heteroxylan. In watermelon, 34 carbohydrate linkages were identified with galactose, glucose, and arabinose linkages in highest abundance. This represents the most comprehensive polysaccharide linkage analysis to date for watermelon, including the identification of several new linkages. However, total pectin and cell wall composition data could not explain the increased tissue firmness observed in fruit from grafted plants. Nonetheless, grafting onto the interspecific hybrid rootstock decreased the incidence of HH and can be a useful method for growers using HH susceptible cultivars.

HortScience ◽  
1996 ◽  
Vol 31 (1) ◽  
pp. 114-116 ◽  
Author(s):  
Noboru Muramatsu ◽  
Toshio Takahara ◽  
Kiyohide Kojima ◽  
Tatsushi Ogata

Various species and cultivars of citrus were studied to determine the relationship between texture and cell wall polysaccharide content of fruit flesh. Among those tested cultivars, navel orange (Citrus sinensis Osbeck) and hassaku (C. hassaku Hort. ex Tanaka) were firmest, `Fukuhara orange' (C. sinensis Osbeck) was intermediate, and satsuma mandarin (C. unshiu Marc.) was softest. There was a 3-fold difference in firmness among the 12 citrus cultigens measured. Cohesiveness values ranged from 0.30 to 0.49 and were not correlated with fruit firmness. Sugar content in each cell wall fraction was highest in the water and EDTA fractions, followed by the hemicellulose fraction, and was lowest in the cellulose fraction. Correlation coefficients between firmness and sugar content ranged from 0.69 to 0.88 and were highest in the cellulose fraction. This study suggests that firmness of fruit flesh among the cultigens is influenced by cell wall polysaccharide composition. Chemical name used: ethylenediaminetetraacetic acid (EDTA).


Biomolecules ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 160 ◽  
Author(s):  
Taotao Li ◽  
Dingding Shi ◽  
Qixian Wu ◽  
Chunxiao Yin ◽  
Fengjun Li ◽  
...  

Modification of cell wall polysaccharide in the plant plays an important role in response to fungi infection. However, the mechanism of fungi infection on cell wall modification need further clarification. In this study, the effects of Penicillium italicum inoculation on ‘shatangju’ mandarin disease development and the potential mechanism of cell wall polysaccharides modification caused by P. italicum were investigated. Compared to the control fruit, P. italicum infection modified the cell wall polysaccharides, indicated by water-soluble pectin (WSP), acid-soluble pectin (ASP), hemicellulose and lignin contents change. P. italicum infection enhanced the activities of polygalacturonase (PG), pectin methylesterase (PME), and the expression levels of xyloglucanendotransglucosylase/hydrolase (XTH) and expansin, which might contribute to cell wall disassembly and cellular integrity damage. Additionally, higher accumulation of reactive oxygen species (ROS) via decreasing antioxidant metabolites and the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) also contributed to the cell wall polysaccharides modification. Meanwhile, the gene expression levels of hydroxyproline-rich glycoprotein (HRGP) and germin-like protein (GLP) were inhibited by pathogen infection. Altogether, these findings suggested that cell wall degradation/modification caused by non-enzymatic and enzymatic factors was an important strategy for P. italicum to infect ‘shatangju’ mandarin.


HortScience ◽  
1999 ◽  
Vol 34 (1) ◽  
pp. 79-81 ◽  
Author(s):  
Noboru Muramatsu ◽  
Toshio Takahara ◽  
Tatsushi Ogata ◽  
Kiyohide Kojima

Changes in rind firmness and cell wall polysaccharide composition were measured in fruit with a) a soft rind, (`Satsuma' mandarin, Citrus unshiu Marc., cv. Aoshima), and b) a firm rind (hassaku, C. hassaku Hort. ex Tanaka), from August to January of the following year. Rind firmness was similar in both species in August, but hassaku had significantly firmer rind than did mandarin from September to January. Both flavedo and albedo tissues were extracted, and the extracts were hydrolyzed and fractionated to yield four fractions: (hot water, EDTA, hemicellulose, and cellulose). In flavedo tissue, sugar concentration was highest in the cellulose fraction, and lowest in the hemicellulose fraction. The concentration in all fractions decreased as the fruit developed and matured. Although the sugar concentration in the cellulose and EDTA fractions of both species was similar in August, it was significantly higher in both fractions in hassaku than in mandarin in January. The sugar concentration of each fraction from albedo tissue was in the order: cellulose > hemicellulose > hot water > EDTA. The range of variation in cell wall sugars in albedo tissue was smaller than that in flavedo tissue. Chemical name used: ethylenediaminetetraacetic acid (EDTA).


1999 ◽  
Vol 77 (7) ◽  
pp. 961-968 ◽  
Author(s):  
Oussama Ahrazem ◽  
Begoña Gómez-Miranda ◽  
Alicia Prieto ◽  
Isabel Barasoaín ◽  
Manuel Bernabé ◽  
...  

The water-soluble polysaccharides (F1SS) obtained from the alkali extracts of the cell wall of two strains of Penicillium vermoesenii Biourge, Fusarium javanicum Koorders, Fusarium solani (Martius) Saccardo, and Fusarium oxysporum Schlechtendahl represented 8.7 to 10.7% of the dry cell wall material. All polysaccharides were composed of galactose (22.0-27.4%), glucose (18.4-30.3%), mannose (7.8-23.1%), and glucuronic acid (3.0-6.0%, except in F. oxysporum that contained 16.8%). Methylation analysis and 1H-NMR spectra of the polysaccharides of these fungi were similar except for F. oxysporum, which showed a higher peak of glucuronic acid than of glucose. The chemical and structural analyses performed indicated that F1SS polysaccharides of the species studied have a skeleton of beta-(1–>6) galactofuranose, fully substituted at positions O-2 by a single residue of glucopyranose or by short side chains containing one glucuronic acid residue and beta-mannopyranose. This polysaccharide is linked to a mannose core consisting of a short chain of alpha-(1–>6)-linked D-mannopyranose. Immunological methods confirm the structural relatedness among these polysaccharides. No similarities were found with the 1H-NMR spectra of F1SS polysaccharides from other species of Penicillium or Gliocladium. These results show that P. vermoesenii is closer to the genus Fusarium than to Penicillium or Gliocladium.Key words: Penicillium vermoesenii, cell wall polysaccharides, chemotaxonomy, NMR, polyclonal antibodies.


2021 ◽  
Vol 22 (6) ◽  
pp. 3077
Author(s):  
Zhenzhen Hao ◽  
Xiaolu Wang ◽  
Haomeng Yang ◽  
Tao Tu ◽  
Jie Zhang ◽  
...  

Plant cell wall polysaccharides (PCWP) are abundantly present in the food of humans and feed of livestock. Mammalians by themselves cannot degrade PCWP but rather depend on microbes resident in the gut intestine for deconstruction. The dominant Bacteroidetes in the gut microbial community are such bacteria with PCWP-degrading ability. The polysaccharide utilization systems (PUL) responsible for PCWP degradation and utilization are a prominent feature of Bacteroidetes. In recent years, there have been tremendous efforts in elucidating how PULs assist Bacteroidetes to assimilate carbon and acquire energy from PCWP. Here, we will review the PUL-mediated plant cell wall polysaccharides utilization in the gut Bacteroidetes focusing on cellulose, xylan, mannan, and pectin utilization and discuss how the mechanisms can be exploited to modulate the gut microbiota.


2000 ◽  
Vol 104 (5) ◽  
pp. 603-610 ◽  
Author(s):  
O. Ahrazem ◽  
B. Gómez-Miranda ◽  
A. Prieto ◽  
I. Barasoaín ◽  
M. Bernabé ◽  
...  

1971 ◽  
Vol 125 (2) ◽  
pp. 473-480 ◽  
Author(s):  
M. A. Obaidah ◽  
K. W. Buck

1. The nature of two polysaccharides (s020 values 6S and 2S respectively in 1m-sodium hydroxide), comprising a fragment (fraction BB, [α]D +236° in 1m-sodium hydroxide), previously isolated from cell walls of Fusicoccum amygdali, has been investigated. 2. Both the major (2S) and minor (6S) components were affected by incubation with α-amylase. The 6S polysaccharide was also attacked by exo-β-(1→3)-glucanase, which is evidence that it contained both α-(1→4)- and β-(1→3)-glucopyranose linkages. By fractionation of the products of α-amylase-treated fraction BB it was possible to obtain a water-insoluble polysaccharide, fraction P ([α]D +290° in 1m-sodium hydroxide, 67% of fraction BB) and a water-soluble polysaccharide, fraction Q ([α]D +16° in 1m-sodium hydroxide, 11% of fraction BB), both of which sedimented as single boundaries with s020 values (in 1m-sodium hydroxide) of 1.7S and 4.6S respectively. 3. Evidence from periodate oxidation, methylation analysis, i.r. spectroscopy and partial acid hydrolysis showed that fraction P consisted of linear chains of α-(1→3)-glucopyranose units with blocks of one or two α-(1→4)-glucopyranose units interspersed at intervals along the main chain. The 2S polysaccharide, from which fraction P is derived, evidently also contains longer blocks of α-(1→4)-glucopyranose units, that are susceptible to α-amylase action. 4. Fraction Q consisted of glucose (88%) with small amounts of galactose, mannose and rhamnose. Evidence from digestion with exo- and endo-β-(1→3)-glucanases, periodate oxidation and methylation analysis suggests that fraction Q consists of a branched galactomannorhamnan core, to which is attached a β-(1→3)-, β-(1→6)-glucan. In the cell wall, chains of α-(1→4)-linked glucopyranose units are linked to fraction Q to form the 6S component of fraction BB.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Min Xiao ◽  
Jianyong Yi ◽  
Jinfeng Bi ◽  
Yuanyuan Zhao ◽  
Jian Peng ◽  
...  

The influences of hot air drying (AD), medium- and short-wave infrared drying (IR), instant controlled pressure drop drying (DIC), and vacuum freeze drying (FD) on cell wall polysaccharide modification were studied, and the relationship between the modifications and texture properties was analyzed. The results showed that the DIC treated apple chips exhibited the highest crispness (92) and excellent honeycomb-like structure among all the dried samples, whereas the FD dried apple chips had low crispness (10), the minimum hardness (17.4 N), and the highest volume ratio (0.76) and rehydration ratio (7.55). Remarkable decreases in the contents of total galacturonic acid and the amounts of water extractable pectin (WEP) were found in all the dried apple chips as compared with the fresh materials. The highest retention of WEP fraction (102.7 mg/g AIR) was observed in the FD dried apple chips, which may lead to a low structural rigidity and may be partially responsible for the lower hardness of the FD apple chips. In addition, the crispness of the apple chips obtained by DIC treatment, as well as AD and IR at 90°C, was higher than that of the samples obtained from the other drying processes, which might be due to the severe degradation of pectic polysaccharides, considering the results of the amounts of pectic fractions, the molar mass distribution, and concentrations of the WEP fractions. Overall, the data suggested that the modifications of pectic polysaccharides of apple chips, including the amount of the pectic fractions and their structural characteristics and the extent of degradation, significantly affect the texture of apple chips.


Sign in / Sign up

Export Citation Format

Share Document