scholarly journals Eggmanone Effectively Overcomes Prostate Cancer Cell Chemoresistance

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 538
Author(s):  
Chen Xie ◽  
Pen-Jen Lin ◽  
Jijun Hao

Prostate cancer chemoresistance is a major therapeutic problem, and the underlying mechanism is not well understood and effective therapies to overcome this problem are not available. Phosphodiesterase-4 (PDE4), a main intracellular enzyme for cAMP hydrolysis, has been previously shown to involve in the early chemo-sensitive prostate cancer cell proliferation and progression, but its role in the more-advanced chemo-resistant prostate cancer is completely unknown. Here we found that the expression of PDE4 subtype, PDE4D, is highly elevated in the chemo-resistant prostate cancer cells (DU145-TxR and PC3-TxR) in comparison to the chemo-sensitive prostate cancer cells (DU145 and PC3). Inhibition of PDE4D with a potent and selective PDED4 inhibitor, Eggmanone, effectively decreases the invasion and proliferation as well as induces cell death of the chemo-resistant prostate cancer cells (DU145-TxR and PC3-TxR). These results were confirmed by siRNA knockdown of PDE4D. We and colleagues previously reported that Eggmanone can effectively blocked sonic Hedgehog signaling via PDE4D inhibition, and here our study suggests that that Eggmanone downregulated proliferation of the chemo-resistant prostate cancer cells via sonic Hedgehog signaling. In addition, Eggmanone treatment dose-dependently increases docetaxel cytotoxicity to DU145-TxR and PC3-TxR. As cancer stem cells (CSCs) are known to be implicated in cancer chemoresistance, we further examined Eggmanone impacts on CSC-like properties in the chemo-resistant prostate cancer cells. Our study shows that Eggmanone effectively down-regulates the expression of CSCs’ marker genes Nanog and ABC sub-family G member 2 (ABCG2) and attenuates sphere formation in DU145-TxR and PC3-TxR cells. In summary, our work shows that Eggmanone effectively overcomes the chemoresistance of prostate cancer cells presumably through sonic Hedgehog signaling and targeting CSCs, suggesting that Eggmanone may serve as a novel agent for chemo-resistant prostate cancer.

2012 ◽  
Vol 11 (1) ◽  
pp. 30 ◽  
Author(s):  
Samantha M Zunich ◽  
Maria Valdovinos ◽  
Taneka Douglas ◽  
David Walterhouse ◽  
Philip Iannaccone ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sukhneeraj P. Kaur ◽  
Arti Verma ◽  
Hee. K. Lee ◽  
Lillie M. Barnett ◽  
Payaningal R. Somanath ◽  
...  

AbstractCancer-associated fibroblasts (CAFs) are the most abundant stromal cell type in the tumor microenvironment. CAFs orchestrate tumor-stromal interactions, and contribute to cancer cell growth, metastasis, extracellular matrix (ECM) remodeling, angiogenesis, immunomodulation, and chemoresistance. However, CAFs have not been successfully targeted for the treatment of cancer. The current study elucidates the significance of glypican-1 (GPC-1), a heparan sulfate proteoglycan, in regulating the activation of human bone marrow-derived stromal cells (BSCs) of fibroblast lineage (HS-5). GPC-1 inhibition changed HS-5 cellular and nuclear morphology, and increased cell migration and contractility. GPC-1 inhibition also increased pro-inflammatory signaling and CAF marker expression. GPC-1 induced an activated fibroblast phenotype when HS-5 cells were exposed to prostate cancer cell conditioned media (CCM). Further, treatment of human bone-derived prostate cancer cells (PC-3) with CCM from HS-5 cells exhibiting GPC-1 loss increased prostate cancer cell aggressiveness. Finally, GPC-1 was expressed in mouse tibia bone cells and present during bone loss induced by mouse prostate cancer cells in a murine prostate cancer bone model. These data demonstrate that GPC-1 partially regulates the intrinsic and extrinsic phenotype of human BSCs and transformation into activated fibroblasts, identify novel functions of GPC-1, and suggest that GPC-1 expression in BSCs exerts inhibitory paracrine effects on the prostate cancer cells. This supports the hypothesis that GPC-1 may be a novel pharmacological target for developing anti-CAF therapeutics to control cancer.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kristen A. Marcellus ◽  
Tara E. Crawford Parks ◽  
Shekoufeh Almasi ◽  
Bernard J. Jasmin

Abstract Background Prostate cancer is one of the most common malignant cancers with the second highest global rate of mortality in men. During the early stages of disease progression, tumour growth is local and androgen-dependent. Despite treatment, a large percentage of patients develop androgen-independent prostate cancer, which often results in metastases, a leading cause of mortality in these patients. Our previous work on the RNA-binding protein Staufen1 demonstrated its novel role in cancer biology, and in particular rhabdomyosarcoma tumorigenesis. To build upon this work, we have focused on the role of Staufen1 in other forms of cancer and describe here the novel and differential roles of Staufen1 in prostate cancer. Methods Using a cell-based approach, three independent prostate cancer cell lines with different characteristics were used to evaluate the expression of Staufen1 in human prostate cancer relative to control prostate cells. The functional impact of Staufen1 on several key oncogenic features of prostate cancer cells including proliferation, apoptosis, migration and invasion were systematically investigated. Results We show that Staufen1 levels are increased in all human prostate cancer cells examined in comparison to normal prostate epithelial cells. Furthermore, Staufen1 differentially regulates growth, migration, and invasion in the various prostate cancer cells assessed. In LNCaP prostate cancer cells, Staufen1 regulates cell proliferation through mTOR activation. Conversely, Staufen1 regulates migration and invasion of the highly invasive, bone metastatic-derived, PC3 prostate cells via the activation of focal adhesion kinase. Conclusions Collectively, these results show that Staufen1 has a direct impact in prostate cancer development and further demonstrate that its functions vary amongst the prostate cancer cell types. Accordingly, Staufen1 represents a novel target for the development of much-needed therapeutic strategies for prostate cancer.


2011 ◽  
Vol 108 (3) ◽  
pp. 424-430 ◽  
Author(s):  
Mu Yao ◽  
Chanlu Xie ◽  
Maryrose Constantine ◽  
Sheng Hua ◽  
Brett D. Hambly ◽  
...  

We have developed a blend of food extracts commonly consumed in the Mediterranean and East Asia, named blueberry punch (BBP), with the ultimate aim to formulate a chemoprevention strategy to inhibit prostate cancer progression in men on active surveillance protocol. We demonstrated previously that BBP inhibited prostate cancer cell proliferation in vitro and in vivo. The purpose of this study was to determine the molecular mechanism responsible for the suppression of prostate cancer cell proliferation by BBP. Treatment of lymph node-metastasised prostate cancer cells (LNCaP) and bone-metastasised prostate cancer cells (PC-3 and MDA-PCa-2b) with BBP (up to 0·8 %) for 72 h increased the percentage of cells at the G0/G1 phase and decreased those at the S and G2/M phases. The finding was supported by the reduction in the percentage of Ki-67-positive cells and of DNA synthesis measured by the incorporation of 5-ethynyl-2′-deoxyuridine. Concomitantly, BBP treatment decreased the protein levels of phosphorylated retinoblastoma, cyclin D1 and E, cyclin-dependent kinase (CDK) 4 and 2, and pre-replication complex (CDC6 and MCM7) in LNCaP and PC-3 cells, whereas CDK inhibitor p27 was elevated in these cell lines. In conclusion, BBP exerts its anti-proliferative effect on prostate cancer cells by modulating the expression and phosphorylation of multiple regulatory proteins essential for cell proliferation.


Proceedings ◽  
2020 ◽  
Vol 40 (1) ◽  
pp. 42
Author(s):  
Kashani ◽  
Kilbas ◽  
Yerlikaya ◽  
Gurkan ◽  
Arisan

Prostate cancer is the second common cause of death among men worldwide. In the treatment of prostate cancer, conventional chemotherapeutics are commonly used. The plant alkaloid Paclitaxel and platinum-based cisplatin are the most common chemotherapy drugs. The transcription factor p53 has a potential target in the regulation of cell response to DNA damage of prostate cancer. Although the effectiveness of these drugs on prostate cancer cell progression had been proved, the mechanistic action of these drugs on the progression of the disease is not detailed explained. In this study, we aim to examine the function of p53 overexpression in prostate cancer cell survival. Therefore, we treated wild type (wt) and p53 overexpressed PC3 (p53+) prostate cancer cells with cisplatin or paclitaxel. According to the MTT Cell Viability assay, cisplatin (12.5–25–50 µM) was found to be more effective decreasing PC3 and PC3 p53+ cell viability in a dose-dependent manner compared to paclitaxel (12.5–25–50 nM). Colony formation assay showed that treatment of cells with cisplatin or paclitaxel caused the loss of colony forming ability of PC3 and PC3 p53+ cells. In addition, the critical apoptotic markers Caspase-3 and Caspase-9 expressions were altered with cisplatin or paclitaxel treated PC3 wt and p53+ cells.


Author(s):  
Qiang Fu ◽  
Zhenye Sun ◽  
Fan Yang ◽  
Tianci Mao ◽  
Yanyao Gao ◽  
...  

Abstract Background Sex-determining region Y-box containing gene 30 (SOX30) is a newly identified tumor-associated gene in several types of cancer. However, whether SOX30 is involved in the development and progression of prostate cancer remains unknown. This study investigated the potential role of SOX30 in prostate cancer. Methods Prostate cancer cell lines and a normal prostate epithelial cell line were used for the experiments. The expression of SOX30 was determined using quantitative real-time PCR and western blot analysis. The malignant cellular behaviors of prostate cancer were assessed using the Cell Counting Kit-8, colony formation and Matrigel invasion assays. The miRNA–mRNA interaction was validated using the dual-luciferase reporter assay. Results SOX30 expression was lower in cells of prostate cancer lines than in cells of the normal prostate epithelial line. Its overexpression repressed the proliferation and invasion of prostate cancer cells. SOX30 was identified as a target gene of microRNA-653-5p (miR-653-5p), which is upregulated in prostate cancer tissues. MiR-653-5p overexpression decreased SOX30 expression, while its inhibition increased SOX30 expression in prostate cancer cells. MiR-653-5p inhibition also markedly restricted prostate cancer cell proliferation and invasion. SOX30 overexpression or miR-653-5p inhibition significantly reduced β-catenin expression and downregulated the activation of Wnt/β-catenin signaling. SOX30 knockdown significantly reversed the miR-653-5p inhibition-mediated inhibitory effect on the proliferation, invasion and Wnt/β-catenin signaling in prostate cancer cells. Conclusions These results reveal a tumor suppressive function for SOX30 in prostate cancer and confirmed the gene as a target of miR-653-5p. SOX30 upregulation due to miR-653-5p inhibition restricted the proliferation and invasion of prostate cancer cells, and this was associated with Wnt/β-catenin signaling suppression. These findings highlight the importance of the miR-653-5p–SOX30–Wnt/β-catenin signaling axis in prostate cancer progression.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jeany Delafiori ◽  
Estela de Oliveira Lima ◽  
Mohamed Ziad Dabaja ◽  
Flávia Luísa Dias-Audibert ◽  
Diogo Noin de Oliveira ◽  
...  

Abstract The recent outbreak of Zika virus (ZIKV) infection associated with microcephaly cases has elicited much research on the mechanisms involved in ZIKV-host cell interactions. It has been described that Zika virus impairs cell growth, raising a hypothesis about its oncolytic potential against cancer cells. ZIKV tumor cell growth inhibition was later confirmed for glioblastoma. It was also demonstrated that an inactivated ZIKV prototype (ZVp) based on bacterial outer membrane vesicles has antiproliferative activity upon other cancer cell lines, such as PC-3 prostate cancer cell. This study aims at understanding the pathways that might be involved with the antiproliferative effect of Zika virus against prostate cancer cells. A metabolomic approach based on high-resolution mass spectrometry analysis led to the identification of 21 statistically relevant markers of PC-3 cells treated with ZVp. The markers were associated with metabolic alterations that trigger lipid remodeling, endoplasmic reticulum stress, inflammatory mediators, as well as disrupted porphyrin and folate metabolism. These findings highlight molecular signatures of ZVp-induced response that may be involved on cellular pathways triggered by its antiproliferative effect. To our knowledge, this is the first reported metabolomic assessment of ZIKV effect on prostate cancer cells, a promising topic for further research.


Sign in / Sign up

Export Citation Format

Share Document