scholarly journals The Fight against COVID-19 on the Multi-Protease Front and Surroundings: Could an Early Therapeutic Approach with Repositioning Drugs Prevent the Disease Severity?

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 710
Author(s):  
Annamaria Vianello ◽  
Serena Del Turco ◽  
Serena Babboni ◽  
Beatrice Silvestrini ◽  
Rosetta Ragusa ◽  
...  

The interaction between the membrane spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the transmembrane angiotensin-converting enzyme 2 (ACE2) receptor of the human epithelial host cell is the first step of infection, which has a critical role for viral pathogenesis of the current coronavirus disease-2019 (COVID-19) pandemic. Following the binding between S1 subunit and ACE2 receptor, different serine proteases, including TMPRSS2 and furin, trigger and participate in the fusion of the viral envelope with the host cell membrane. On the basis of the high virulence and pathogenicity of SARS-CoV-2, other receptors have been found involved for viral binding and invasiveness of host cells. This review comprehensively discusses the mechanisms underlying the binding of SARS-CoV2 to ACE2 and putative alternative receptors, and the role of potential co-receptors and proteases in the early stages of SARS-CoV-2 infection. Given the short therapeutic time window within which to act to avoid the devastating evolution of the disease, we focused on potential therapeutic treatments—selected mainly among repurposing drugs—able to counteract the invasive front of proteases and mild inflammatory conditions, in order to prevent severe infection. Using existing approved drugs has the advantage of rapidly proceeding to clinical trials, low cost and, consequently, immediate and worldwide availability.

2008 ◽  
Vol 76 (9) ◽  
pp. 4282-4289 ◽  
Author(s):  
Toshio Kodama ◽  
Hirotaka Hiyoshi ◽  
Kazuyoshi Gotoh ◽  
Yukihiro Akeda ◽  
Shigeaki Matsuda ◽  
...  

ABSTRACT The type III secretion system (T3SS) translocon complex is composed of several associated proteins, which form a translocation channel through the host cell plasma membrane. These proteins are key molecules that are involved in the pathogenicity of many T3SS-positive bacteria, because they are necessary to deliver effector proteins into host cells. A T3SS designated T3SS2 of Vibrio parahaemolyticus is thought to be related to the enterotoxicity of this bacterium in humans, but the effector translocation mechanism of T3SS2 is unclear because there is only one gene (the VPA1362 gene) in the T3SS2 region that is homologous to other translocon protein genes. It is also not known whether the VPA1362 protein is functional in the translocon of T3SS2 or whether it is sufficient to form the translocation channel of T3SS2. In this study, we identified both VPA1362 (designated VopB2) and VPA1361 (designated VopD2) as T3SS2-dependent secretion proteins. Functional analysis of these proteins showed that they are essential for T3SS2-dependent cytotoxicity, for the translocation of one of the T3SS2 effector proteins (VopT), and for the contact-dependent activity of pore formation in infected cells in vitro. Their targeting to the host cell membrane depends on T3SS2, and furthermore, they are necessary for T3SS2-dependent enterotoxicity in vivo. These results indicate that VopB2 and VopD2 act as translocon proteins of V. parahaemolyticus T3SS2 and hence have a critical role in the T3SS2-dependent enterotoxicity of this bacterium.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 238
Author(s):  
Malgorzata Kloc ◽  
Ahmed Uosef ◽  
Jacek Z. Kubiak ◽  
Rafik M. Ghobrial

Human placenta formation relies on the interaction between fused trophoblast cells of the embryo with uterine endometrium. The fusion between trophoblast cells, first into cytotrophoblast and then into syncytiotrophoblast, is facilitated by the fusogenic protein syncytin. Syncytin derives from an envelope glycoprotein (ENV) of retroviral origin. In exogenous retroviruses, the envelope glycoproteins coded by env genes allow fusion of the viral envelope with the host cell membrane and entry of the virus into a host cell. During mammalian evolution, the env genes have been repeatedly, and independently, captured by various mammalian species to facilitate the formation of the placenta. Such a shift in the function of a gene, or a trait, for a different purpose during evolution is called an exaptation (co-option). We discuss the structure and origin of the placenta, the fusogenic and non-fusogenic functions of syncytin, and the mechanism of cell fusion. We also comment on an alleged danger of the COVID-19 vaccine based on the presupposed similarity between syncytin and the SARS-CoV-2 spike protein.


1995 ◽  
Vol 108 (6) ◽  
pp. 2457-2464 ◽  
Author(s):  
J.H. Morisaki ◽  
J.E. Heuser ◽  
L.D. Sibley

Toxoplasma gondii is an obligate intracellular parasite that infects a wide variety of vertebrate cells including macrophages. We have used a combination of video microscopy and fluorescence localization to examine the entry of Toxoplasma into macrophages and nonphagocytic host cells. Toxoplasma actively invaded host cells without inducing host cell membrane ruffling, actin microfilament reorganization, or tyrosine phosphorylation of host proteins. Invasion occurred rapidly and within 25–40 seconds the parasite penetrated into a tight-fitting vacuole formed by invagination of the plasma membrane. In contrast, during phagocytosis of Toxoplasma, extensive membrane ruffling captured the parasite in a loose-fitting phagosome that formed over a period of 2–4 minutes. Phagocytosis involved both reorganization of the host cytoskeleton and tyrosine phosphorylation of host proteins. In some cases, parasites that were first internalized by phagocytosis, were able to escape from the phagosome by a process analogous to invasion. These studies reveal that active penetration of the host cell by Toxoplasma is fundamentally different from phagocytosis or induced endocytic uptake. The novel ability to penetrate the host cell likely contributes to the capability of Toxoplasma-containing vacuoles to avoid endocytic processing.


2005 ◽  
Vol 42 (6) ◽  
pp. 788-796 ◽  
Author(s):  
C. A. Cummings ◽  
R. J. Panciera ◽  
K. M. Kocan ◽  
J. S. Mathew ◽  
S. A. Ewing

American canine hepatozoonosis is caused by Hepatozoon americanum, a protozoan parasite, the definitive host of which is the tick, Amblyomma maculatum. Infection of the dog follows ingestion of ticks that harbor sporulated H. americanum oocysts. Following penetration of the intestinal mucosa, sporozoites are disseminated systemically and give rise to extensive asexual multiplication in cells located predominantly in striated muscle. The parasitized canine cells in “onion skin” cysts and in granulomas situated within skeletal muscle, as well as those in peripheral blood leukocytes (PBL), were identified as macrophages by use of fine structure morphology and/or immunohistochemical reactivity with macrophage markers. Additionally, two basic morphologic forms of the parasite were observed in macrophages of granulomas and PBLs. The forms were presumptively identified as merozoites and gamonts. The presence of a “tail” in some gamonts in PBLs indicated differentiation toward microgametes. Recognition of merozoites in PBLs supports the contention that hematogenously redistributed merozoites initiate repeated asexual cycles and could explain persistence of infection for long periods in the vertebrate host. Failure to clearly demonstrate a host cell membrane defining a parasitophorous vacuole may indicate that the parasite actively penetrates the host cell membrane rather than being engulfed by the host cell, as is characteristic of some protozoans.


2010 ◽  
Vol 190 (1) ◽  
pp. 143-157 ◽  
Author(s):  
Adrian Mehlitz ◽  
Sebastian Banhart ◽  
André P. Mäurer ◽  
Alexis Kaushansky ◽  
Andrew G. Gordus ◽  
...  

Many bacterial pathogens translocate effector proteins into host cells to manipulate host cell functions. Here, we used a protein microarray comprising virtually all human SRC homology 2 (SH2) and phosphotyrosine binding domains to comprehensively and quantitatively assess interactions between host cell proteins and the early phase Chlamydia trachomatis effector protein translocated actin-recruiting phosphoprotein (Tarp), which is rapidly tyrosine phosphorylated upon host cell entry. We discovered numerous novel interactions between human SH2 domains and phosphopeptides derived from Tarp. The adaptor protein SHC1 was among Tarp’s strongest interaction partners. Transcriptome analysis of SHC1-dependent gene regulation during infection indicated that SHC1 regulates apoptosis- and growth-related genes. SHC1 knockdown sensitized infected host cells to tumor necrosis factor–induced apoptosis. Collectively, our findings reveal a critical role for SHC1 in early C. trachomatis–induced cell survival and suggest that Tarp functions as a multivalent phosphorylation-dependent signaling hub that is important during the early phase of chlamydial infection.


Parasitology ◽  
1996 ◽  
Vol 113 (5) ◽  
pp. 439-448 ◽  
Author(s):  
P. P. J. Dunn ◽  
J. M. Bumstead ◽  
F. M. Tomley

SUMMARYWe have isolated and sequenced cDNA clones fromEimeria tenellaandEimeria maximawhich encode proteins that share homology with a recently described family of calmodulin-domain protein kinases. The primary sequence data show that each of the protein kinases can be divided into 2 main functional domains – an amino-terminal catalytic domain typical of serine/threonine protein kinases and a carboxy-terminal domain homologous to calmodulin, which is capable of binding calcium ions at 4 ‘EF-hand’ motifs. Expression of theE. tenellacalmodulin-domain protein kinase (EtCDPK) increased towards the end of oocyst sporulation, as judged by Northern and Western blotting, and indirect immunofluorescent antibody labelling showed that within a few minutes of adding sporozoites to target host cells inin vitroculture EtCDPK was found to be specifically associated with a filament-like structure that converges at the apical end of the parasite. Once the parasite entered the host cell EtCDPK appeared to be left on the host cell membrane at the point of entry, indicating a brief yet specific role for this molecule in the invasion of host cells byE. tenella.


2002 ◽  
Vol 70 (10) ◽  
pp. 5822-5826 ◽  
Author(s):  
Naoaki Yokoyama ◽  
Boonchit Suthisak ◽  
Haruyuki Hirata ◽  
Tomohide Matsuo ◽  
Noboru Inoue ◽  
...  

ABSTRACT The cellular localization of Babesia bovis rhoptry-associated protein 1 (RAP-1) and its erythrocyte-binding affinity were examined with anti-RAP-1 antibodies. In an indirect immunofluorescent antibody test, RAP-1 was detectable in all developmental stages of merozoites and in extracellular merozoites. In the early stage of merozoite development, RAP-1 appears as a dense accumulation, which later thins out and blankets the host cell cytoplasm, but retains a denser mass around newly formed parasite nuclei. The preferential accumulations of RAP-1 on the inner surface of a host cell membrane and bordering the parasite's outer surface were demonstrable by immunoelectron microscopy. An erythrocyte-binding assay with the lysate of merozoites demonstrated RAP-1 binding to both bovine and equine erythrocytes. Anti-RAP-1 monoclonal antibody 1C1 prevented the interaction of RAP-1 with bovine erythrocytes and significantly inhibited parasite proliferation in vitro. With the recombinant RAP-1, the addition of increasing concentrations of Ca2+ accentuated its binding affinity with bovine erythrocytes. The present findings lend support to an earlier proposition of an erythrocytic binding role for RAP-1 expressed in B. bovis merozoites and, possibly, its involvement in the escape of newly formed merozoites from host cells.


mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Stephen Weber ◽  
Maria Wagner ◽  
Hubert Hilbi

ABSTRACTThe causative agent of Legionnaires’ disease,Legionella pneumophila, replicates in amoebae and macrophages in a distinct membrane-bound compartment, theLegionella-containing vacuole (LCV). LCV formation is governed by the bacterial Icm/Dot type IV secretion system that translocates ~300 different “effector” proteins into host cells. Some of the translocated effectors anchor to the LCV membrane via phosphoinositide (PI) lipids. Here, we use the soil amoebaDictyostelium discoideum, producing fluorescent PI probes, to analyze the LCV PI dynamics by live-cell imaging. Upon uptake of wild-type or Icm/Dot-deficientL. pneumophila, PtdIns(3,4,5)P3transiently accumulated for an average of 40 s on early phagosomes, which acquired PtdIns(3)Pwithin 1 min after uptake. Whereas phagosomes containing ΔicmTmutant bacteria remained decorated with PtdIns(3)P, more than 80% of wild-type LCVs gradually lost this PI within 2 h. The process was accompanied by a major rearrangement of PtdIns(3)P-positive membranes condensing to the cell center. PtdIns(4)Ptransiently localized to early phagosomes harboring wild-type or ΔicmT L. pneumophilaand was cleared within minutes after uptake. During the following 2 h, PtdIns(4)Psteadily accumulated only on wild-type LCVs, which maintained a discrete PtdIns(4)Pidentity spatially separated from calnexin-positive endoplasmic reticulum (ER) for at least 8 h. The separation of PtdIns(4)P-positive and ER membranes was even more pronounced for LCVs harboring ΔsidC-sdcAmutant bacteria defective for ER recruitment, without affecting initial bacterial replication in the pathogen vacuole. These findings elucidate the temporal and spatial dynamics of PI lipids implicated in LCV formation and provide insight into host cell membrane and effector protein interactions.IMPORTANCEThe environmental bacteriumLegionella pneumophilais the causative agent of Legionnaires’ pneumonia. The bacteria form in free-living amoebae and mammalian immune cells a replication-permissive compartment, theLegionella-containing vacuole (LCV). To subvert host cell processes, the bacteria secrete the amazing number of ~300 different proteins into host cells. Some of these proteins bind phosphoinositide (PI) lipids to decorate the LCV. PI lipids are crucial factors involved in host cell membrane dynamics and LCV formation. UsingDictyosteliumamoebae producing one or two distinct fluorescent probes, we elucidated the dynamic LCV PI pattern in high temporal and spatial resolution. Notably, the endocytic PI lipid PtdIns(3)Pwas slowly cleared from LCVs, thus incapacitating the host cell’s digestive machinery, while PtdIns(4)Pgradually accumulated on the LCV, enabling critical interactions with host organelles. The LCV PI pattern underlies the spatiotemporal configuration of bacterial effector proteins and therefore represents a crucial aspect of LCV formation.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Melissa M. Kendall

ABSTRACT The type three secretion system (T3SS) is critical for the virulence of diverse bacterial pathogens. Pathogens use the T3SS to deliver effector proteins into host cells and manipulate host signaling pathways. The prevailing mechanism is that effectors translocate from inside the T3SS directly into the host cell. Recent studies reveal an alternative mechanism of effector translocation, in which an effector protein located outside the bacterial cell relies on the T3SS for delivery into host cells. Tejeda-Dominguez et al. (F. Tejeda-Dominguez, J. Huerta-Cantillo, L. Chavez-Dueñas, and F. Navarro-Garcia, mBio 8:e00184-17, 2017, https://doi.org/10.1128/mBio.00184-17 !) demonstrate that the EspC effector of enteropathogenic Escherichia coli is translocated by binding to the outside of the T3SS and subsequently gains access to the host cell cytoplasm through the T3SS pore embedded within the host cell membrane. This work reveals a novel mechanism of translocation that is likely relevant for a variety of other pathogens that use the T3SS as part of their virulence arsenal.


mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Shruthi Krishnamurthy ◽  
Bin Deng ◽  
Roxana del Rio ◽  
Kerry R. Buchholz ◽  
Moritz Treeck ◽  
...  

ABSTRACT Apical membrane antigen 1 (AMA1) is a receptor protein on the surface of Toxoplasma gondii that plays a critical role in host cell invasion. The ligand to which T . gondii AMA1 (TgAMA1) binds, TgRON2, is secreted into the host cell membrane by the parasite during the early stages of invasion. The TgAMA1-TgRON2 complex forms the core of the “moving junction,” a ring-shaped zone of tight contact between the parasite and host cell membranes, through which the parasite pushes itself during invasion. Paradoxically, the parasite also expresses rhomboid proteases that constitutively cleave the TgAMA1 transmembrane domain. How can TgAMA1 function effectively in host cell binding if its extracellular domain is constantly shed from the parasite surface? We show here that when TgAMA1 binds the domain 3 (D3) peptide of TgRON2, its susceptibility to cleavage by rhomboid protease(s) is greatly reduced. This likely serves to maintain parasite-host cell binding at the moving junction, a hypothesis supported by data showing that parasites expressing a hypercleavable version of TgAMA1 invade less efficiently than wild-type parasites do. Treatment of parasites with the D3 peptide was also found to reduce phosphorylation of S527 on the cytoplasmic tail of TgAMA1, and parasites expressing a phosphomimetic S527D allele of TgAMA1 showed an invasion defect. Taken together, these data suggest that TgAMA1-TgRON2 interaction at the moving junction protects TgAMA1 molecules that are actively engaged in host cell penetration from rhomboid-mediated cleavage and generates an outside-in signal that leads to dephosphorylation of the TgAMA1 cytosolic tail. Both of these effects are required for maximally efficient host cell invasion. IMPORTANCE Nearly one-third of the world’s population is infected with the protozoan parasite Toxoplasma gondii , which causes life-threatening disease in neonates and immunocompromised individuals. T. gondii is a member of the phylum Apicomplexa, which includes many other parasites of veterinary and medical importance, such as those that cause coccidiosis, babesiosis, and malaria. Apicomplexan parasites grow within their hosts through repeated cycles of host cell invasion, parasite replication, and host cell lysis. Parasites that cannot invade host cells cannot survive or cause disease. AMA1 is a highly conserved protein on the surface of apicomplexan parasites that is known to be important for invasion, and the work presented here reveals new and unexpected insights into AMA1 function. A more complete understanding of the role of AMA1 in invasion may ultimately contribute to the development of new chemotherapeutics designed to disrupt AMA1 function and invasion-related signaling in this important group of human pathogens.


Sign in / Sign up

Export Citation Format

Share Document