scholarly journals Cytoskeleton Response to Ionizing Radiation: A Brief Review on Adhesion and Migration Effects

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1102
Author(s):  
Giuseppe La Verde ◽  
Valeria Artiola ◽  
Valeria Panzetta ◽  
Mariagabriella Pugliese ◽  
Paolo A. Netti ◽  
...  

The cytoskeleton is involved in several biological processes, including adhesion, motility, and intracellular transport. Alterations in the cytoskeletal components (actin filaments, intermediate filaments, and microtubules) are strictly correlated to several diseases, such as cancer. Furthermore, alterations in the cytoskeletal structure can lead to anomalies in cells’ properties and increase their invasiveness. This review aims to analyse several studies which have examined the alteration of the cell cytoskeleton induced by ionizing radiations. In particular, the radiation effects on the actin cytoskeleton, cell adhesion, and migration have been considered to gain a deeper knowledge of the biophysical properties of the cell. In fact, the results found in the analysed works can not only aid in developing new diagnostic tools but also improve the current cancer treatments.

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1720
Author(s):  
Nishant V. Sewgobind ◽  
Sanne Albers ◽  
Roland J. Pieters

Galectin-7 is a soluble unglycosylated lectin that is able to bind specifically to β-galactosides. It has been described to be involved in apoptosis, proliferation and differentiation, but also in cell adhesion and migration. Several disorders and diseases are discussed by covering the aforementioned biological processes. Structural features of galectin-7 are discussed as well as targeting the protein intracellularly or extracellularly. The exact molecular mechanisms that lie behind many biological processes involving galectin-7 are not known. It is therefore useful to come up with chemical probes or tools in order to obtain knowledge of the physiological processes. The objective of this review is to summarize the roles and functions of galectin-7 in the human body, providing reasons why it is necessary to design inhibitors for galectin-7, to give the reader structural insights and describe its current inhibitors.


Author(s):  
Amit Pathak ◽  
Sanjay Kumar

Eukaryotic cells actively respond to variations in ligand density and stiffness of their extracellular matrix (ECM). This cell-ECM relationship plays an important role in regulating cell migration, wound healing, tumor invasion and metastasis. A better understanding of these mechanosenstive responses requires more rigorous models of the relationships between ECM biophysical properties, mechanotransductive signals, assembly of contractile and adhesive structures, and cell migration.


Oncogene ◽  
2020 ◽  
Vol 39 (18) ◽  
pp. 3666-3679 ◽  
Author(s):  
Mario De Piano ◽  
Valeria Manuelli ◽  
Giorgia Zadra ◽  
Jonathan Otte ◽  
Per-Henrik D. Edqvist ◽  
...  

1999 ◽  
Vol 77 (5) ◽  
pp. 409-420 ◽  
Author(s):  
Dolores Hangan-Steinman ◽  
Wai-chi Ho ◽  
Priti Shenoy ◽  
Bosco MC Chan ◽  
Vincent L Morris

It is well established that a biphasic relationship exists between the adhesive strength of β1 integrins and their ability to mediate cell movement. Thus, cell movement increases progressively with adhesive strength, but beyond a certain point of optimal interaction, cell movement is reduced with further increases in adhesive function. The interplay between the various kinase and phosphatase activities provides the balance in β1 integrin-mediated cell adhesion and migration. In the present study, the significance of protein tyrosine phosphatases (PTP) and ser/thr protein phosphatases (PP) in α4β1 and α5β1 integrin-mediated mouse melanoma B16F1 cell anchorage and migration on fibronectin was characterized using phosphatase inhibitors. At low fibronectin concentration, α5β1 functioned as the predominant receptor for cell movement; a role for α4β1 in B16F1 cell migration increased progressively with fibronectin concentration. Treatment of B16F1 cells with PTP inhibitors, sodium orthovanadate (Na3VO4) and phenylarsine oxide (PAO), or PP-1/2A inhibitor, okadaic acid (OA), abolished cell movement. Inhibition of cell movement by PAO and OA was associated by a reduction in the adhesive strength of α4β1 and α5β1. In contrast, treatment of B16F1 cells with Na3VO4 resulted in selective stimulation of the adhesive function of α5β1, but not α4β1. Therefore, our results demonstrate that (i) both PTP and PP-1/2A have roles in cell movement, (ii) modulation of cell movement by PTP and PP-1/2A may involve either a stimulation or reduction of β1 integrin adhesive strength, and (iii) distinct phosphatase-mediated signaling pathways for differential regulation of the various β1 integrins exist. Key words: phosphatases, integrins, cell movement, cell adhesion.


Sign in / Sign up

Export Citation Format

Share Document