scholarly journals The Role of Smoothened-Dependent and -Independent Hedgehog Signaling Pathway in Tumorigenesis

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1188
Author(s):  
Jian Yi Chai ◽  
Vaisnevee Sugumar ◽  
Mohammed Abdullah Alshawsh ◽  
Won Fen Wong ◽  
Aditya Arya ◽  
...  

The Hedgehog (Hh)-glioma-associated oncogene homolog (GLI) signaling pathway is highly conserved among mammals, with crucial roles in regulating embryonic development as well as in cancer initiation and progression. The GLI transcription factors (GLI1, GLI2, and GLI3) are effectors of the Hh pathway and are regulated via Smoothened (SMO)-dependent and SMO-independent mechanisms. The SMO-dependent route involves the common Hh-PTCH-SMO axis, and mutations or transcriptional and epigenetic dysregulation at these levels lead to the constitutive activation of GLI transcription factors. Conversely, the SMO-independent route involves the SMO bypass regulation of GLI transcription factors by external signaling pathways and their interacting proteins or by epigenetic and transcriptional regulation of GLI transcription factors expression. Both routes of GLI activation, when dysregulated, have been heavily implicated in tumorigenesis of many known cancers, making them important targets for cancer treatment. Hence, this review describes the various SMO-dependent and SMO-independent routes of GLI regulation in the tumorigenesis of multiple cancers in order to provide a holistic view of the paradigms of hedgehog signaling networks involving GLI regulation. An in-depth understanding of the complex interplay between GLI and various signaling elements could help inspire new therapeutic breakthroughs for the treatment of Hh-GLI-dependent cancers in the future. Lastly, we have presented an up-to-date summary of the latest findings concerning the use of Hh inhibitors in clinical developmental studies and discussed the challenges, perspectives, and possible directions regarding the use of SMO/GLI inhibitors in clinical settings.

Author(s):  
Yang Yue ◽  
Martin F. Engelke ◽  
T. Lynne Blasius ◽  
Kristen J. Verhey

The kinesin-4 motor KIF7 is a conserved regulator of the Hedgehog signaling pathway. In vertebrates, Hedgehog signaling requires the primary cilium, and KIF7 and Gli transcription factors accumulate at the cilium tip in response to Hedgehog activation. Unlike conventional kinesins, KIF7 is an immotile kinesin and its mechanism of ciliary accumulation is unknown. We generated KIF7 variants with altered microtubule binding or motility. We demonstrate that microtubule binding of KIF7 is not required for the increase in KIF7 or Gli localization at the cilium tip in response to Hedgehog signaling. In addition, we show that the immotile behavior of KIF7 is required to prevent ciliary localization of Gli transcription factors in the absence of Hedgehog signaling. Using an engineered kinesin-2 motor that enables acute inhibition of intraflagellar transport (IFT), we demonstrate that kinesin-2 KIF3A/KIF3B/KAP mediates the translocation of KIF7 to the cilium tip in response to Hedgehog pathway activation. Together, these results suggest that KIF7’s role at the tip of the cilium is unrelated to its ability to bind to microtubules.


2018 ◽  
Vol 18 (1) ◽  
pp. 8-20 ◽  
Author(s):  
Ana Marija Skoda ◽  
Dora Simovic ◽  
Valentina Karin ◽  
Vedran Kardum ◽  
Semir Vranic ◽  
...  

The Hedgehog (Hh) signaling pathway was first identified in the common fruit fly. It is a highly conserved evolutionary pathway of signal transmission from the cell membrane to the nucleus. The Hh signaling pathway plays an important role in the embryonic development. It exerts its biological effects through a signaling cascade that culminates in a change of balance between activator and repressor forms of glioma-associated oncogene (Gli) transcription factors. The components of the Hh signaling pathway involved in the signaling transfer to the Gli transcription factors include Hedgehog ligands (Sonic Hh [SHh], Indian Hh [IHh], and Desert Hh [DHh]), Patched receptor (Ptch1, Ptch2), Smoothened receptor (Smo), Suppressor of fused homolog (Sufu), kinesin protein Kif7, protein kinase A (PKA), and cyclic adenosine monophosphate (cAMP). The activator form of Gli travels to the nucleus and stimulates the transcription of the target genes by binding to their promoters. The main target genes of the Hh signaling pathway are PTCH1, PTCH2, and GLI1. Deregulation of the Hh signaling pathway is associated with developmental anomalies and cancer, including Gorlin syndrome, and sporadic cancers, such as basal cell carcinoma, medulloblastoma, pancreatic, breast, colon, ovarian, and small-cell lung carcinomas. The aberrant activation of the Hh signaling pathway is caused by mutations in the related genes (ligand-independent signaling) or by the excessive expression of the Hh signaling molecules (ligand-dependent signaling – autocrine or paracrine). Several Hh signaling pathway inhibitors, such as vismodegib and sonidegib, have been developed for cancer treatment. These drugs are regarded as promising cancer therapies, especially for patients with refractory/advanced cancers.


2018 ◽  
Vol 29 (10) ◽  
pp. 1178-1189 ◽  
Author(s):  
Thibaut Eguether ◽  
Fabrice P. Cordelieres ◽  
Gregory J. Pazour

The vertebrate hedgehog pathway is organized in primary cilia, and hedgehog components relocate into or out of cilia during signaling. Defects in intraflagellar transport (IFT) typically disrupt ciliary assembly and attenuate hedgehog signaling. Determining whether IFT drives the movement of hedgehog components is difficult due to the requirement of IFT for building cilia. Unlike most IFT proteins, IFT27 is dispensable for cilia formation but affects hedgehog signaling similarly to other IFTs, allowing us to examine its role in the dynamics of signaling. Activating signaling at points along the pathway in Ift27 mutant cells showed that IFT is extensively involved in the pathway. Similar analysis of Bbs mutant cells showed that BBS proteins participate at many levels of signaling but are not needed to concentrate Gli transcription factors at the ciliary tip. Our analysis showed that smoothened delivery to cilia does not require IFT27, but the role of other IFTs is not known. Using a rapamycin-induced dimerization system to sequester IFT-B proteins at the mitochondria in cells with fully formed cilia did not affect the delivery of Smo to cilia, suggesting that this membrane protein may not require IFT-B for delivery.


Endocrinology ◽  
2011 ◽  
Vol 152 (7) ◽  
pp. 2894-2903 ◽  
Author(s):  
Shinichi Miyagawa ◽  
Daisuke Matsumaru ◽  
Aki Murashima ◽  
Akiko Omori ◽  
Yoshihiko Satoh ◽  
...  

During embryogenesis, sexually dimorphic organogenesis is achieved by hormones produced in the gonad. The external genitalia develop from a single primordium, the genital tubercle, and their masculinization processes depend on the androgen signaling. In addition to such hormonal signaling, the involvement of nongonadal and locally produced masculinization factors has been unclear. To elucidate the mechanisms of the sexually dimorphic development of the external genitalia, series of conditional mutant mouse analyses were performed using several mutant alleles, particularly focusing on the role of hedgehog signaling pathway in this manuscript. We demonstrate that hedgehog pathway is indispensable for the establishment of male external genitalia characteristics. Sonic hedgehog is expressed in the urethral plate epithelium, and its signal is mediated through glioblastoma 2 (Gli2) in the mesenchyme. The expression level of the sexually dimorphic genes is decreased in the glioblastoma 2 mutant embryos, suggesting that hedgehog signal is likely to facilitate the masculinization processes by affecting the androgen responsiveness. In addition, a conditional mutation of Sonic hedgehog at the sexual differentiation stage leads to abnormal male external genitalia development. The current study identified hedgehog signaling pathway as a key factor not only for initial development but also for sexually dimorphic development of the external genitalia in coordination with androgen signaling.


Author(s):  
Bill Chaudhry ◽  
José Luis de la Pompa ◽  
Nadia Mercader

The zebrafish has become an established laboratory model for developmental studies and is increasingly used to model aspects of human development and disease. However, reviewers and grant funding bodies continue to speculate on the utility of this Himalayan minnow. In this chapter we explain the similarities and differences between the heart from this distantly related vertebrate and the mammalian heart, in order to reveal the common fundamental processes and to prevent misleading extrapolations. We provide an overview of zebrafish including their husbandry, development, peculiarities of their genome, and technological advances, which make them a highly tractable laboratory model for heart development and disease. We discuss the controversies around morphants and mutants, and relate the development and structures of the zebrafish heart to mammalian counterparts. Finally, we give an overview of regeneration in the zebrafish heart and speculate on the role of the model organism in next-generation sequencing technologies.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Shiqin Li ◽  
Meng Wang ◽  
Yanghui Chen ◽  
Wei Wang ◽  
Junying Wu ◽  
...  

Germline stem cells (GSCs) are adult stem cells that are responsible for the production of gametes and include spermatogonial stem cells (SSCs) and ovarian germline stem cells (OGSCs). GSCs are located in a specialized microenvironment in the gonads called the niche. Many recent studies have demonstrated that multiple signals in the niche jointly regulate the proliferation and differentiation of GSCs, which is of significance for reproductive function. Previous studies have demonstrated that the hedgehog (Hh) signaling pathway participates in the proliferation and differentiation of various stem cells, including GSCs in Drosophila and male mammals. Furthermore, the discovery of mammalian OGSCs challenged the traditional opinion that the number of primary follicles is fixed in postnatal mammals, which is of significance for the reproductive ability of female mammals and the treatment of diseases related to germ cells. Meanwhile, it still remains to be determined whether the Hh signaling pathway participates in the regulation of the behavior of OGSCs. Herein, we review the current research on the role of the Hh signaling pathway in mediating the behavior of GSCs. In addition, some suggestions for future research are proposed.


2006 ◽  
Vol 4 (4) ◽  
pp. 3-9
Author(s):  
Maria A Osipova ◽  
Elena A Dolgikh ◽  
Ludmila A Lutova

Homeodomain-containing transcription factors are the important regulators of multicellular organism's development. Plant transcription factors WOX and KNOX play the key role in meristem maintenance, controlling cell proliferation and preventing differentiation. The precise mechanism of WOX and KNOX action hasn't been well studied, however these transcription factors were shown to play the important role in plant hormones homeostasis, cytokinins in particular. Plant transcription factors of KNOX group demonstrate the similarities in structure and are supposed have the common origin with animal transcription factors of MEIS group. This review describes WOX and KNOX transcription factor families, their interaction with plant hormones. The role of homeodomain-containing transcription factors in plant and animal tumor formation is discussed.


2021 ◽  
Vol 21 ◽  
Author(s):  
Mehran Pashirzad ◽  
Reihaneh Khorasanian ◽  
Maryam Mahmoudi Fard ◽  
Mohammad-Hassan Arjmand ◽  
Hadis Langari ◽  
...  

: The MAPK/ERK signaling pathway regulates cancer cell proliferation, apoptosis, inflammation, angiogenesis, metastasis and drug resistance. Mutations and up-regulation of components of the MAPK/ERK signaling pathway, as well as over-activation of this critical signaling pathway, are frequently observed in colorectal carcinomas. Targeting the MAPK/ERK signaling pathway, using specific pharmacological inhibitors, elicits potent anti-tumor effects, supporting the therapeutic potential of these inhibitors in the treatment of CRC. Several drugs have recently been developed for the inhibition of the MEK/ERK pathway in preclinical and clinical settings, such as MEK162 and MK-2206. MEK1/2 inhibitors demonstrate promising efficacy and anticancer activity for the treatment of this malignancy. This review summarizes the current knowledge on the role of the MAPK/ERK signaling pathway in the pathogenesis of CRC and the potential clinical value of synthetic inhibitors of this pathway in preventing CRC progression for a better understanding, and hence, better management of colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document