scholarly journals A DNA Methylation-Based Gene Signature Can Predict Triple-Negative Breast Cancer Diagnosis

Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1394
Author(s):  
Saioa Mendaza ◽  
David Guerrero-Setas ◽  
Iñaki Monreal-Santesteban ◽  
Ane Ulazia-Garmendia ◽  
Alicia Cordoba Iturriagagoitia ◽  
...  

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer (BC) subtype and lacks targeted treatment. It is diagnosed by the absence of immunohistochemical expression of several biomarkers, but this method still displays some interlaboratory variability. DNA methylome aberrations are common in BC, thereby methylation profiling could provide the identification of accurate TNBC diagnosis biomarkers. Here, we generated a signature of differentially methylated probes with class prediction ability between 5 non-neoplastic breast and 7 TNBC tissues (error rate = 0.083). The robustness of this signature was corroborated in larger cohorts of additional 58 non-neoplastic breast, 93 TNBC, and 150 BC samples from the Gene Expression Omnibus repository, where it yielded an error rate of 0.006. Furthermore, we validated by pyrosequencing the hypomethylation of three out of 34 selected probes (FLJ43663, PBX Homeobox 1 (PBX1), and RAS P21 protein activator 3 (RASA3) in 51 TNBC, even at early stages of the disease. Finally, we found significantly lower methylation levels of FLJ43663 in cell free-DNA from the plasma of six TNBC patients than in 15 healthy donors. In conclusion, we report a novel DNA methylation signature with potential predictive value for TNBC diagnosis.

2021 ◽  
Author(s):  
Yunfei Ye ◽  
Jungang Ma ◽  
Qin Zhang ◽  
Kai Xiong ◽  
Zhimin Zhang ◽  
...  

Abstract Purpose This study aimed to develop and validate a prognostic model for metastasis-free survival (MFS) based on genes that may functionally interact with cytotoxic T lymphocytes (CTLs) and M2 macrophages in patients with triple-negative breast cancer (TNBC) who underwent adjuvant radiotherapy.Methods The transcriptional profiles and phenotypical files of TNBC and other subtypes of breast cancer were downloaded from the Gene Expression Omnibus (GEO). The abundance of infiltrated immune cells was evaluated through CIBERSORTx or MCP-counter. A weighted linear model, the score for MFS (SMFS), was developed by using least absolute shrinkage and selection operator (LASSO) in GSE58812 and validated in GSE2034 and GSE12276. The biological implication of SMFS was explored by evaluating its associations with TNBC molecular subtypes and other radiosensitivity- or immune-related signatures. Results A model consisting of the gene expression ratios of PCDH12/ELP3, PCDH12/MSRA and FAM160B2/MSRA with nonzero coefficients finally selected by LASSO was developed in GSE58812. In GSE2034 (treatment with adjuvant radiotherapy), SMFS was significantly associated with MFS in TNBC patients (HR=8.767, 95% CI: 1.856-41.408, P=0.006) and, to a lesser extent, in non-TNBC patients (HR=2.888, 95% CI: 1.076-7.750, P=0.035). However, the interaction of subtype (TNBC vs non-TNBC) and SMFS tended to be significant (Pinteraction=0.081). In contrast, SMFS was not significantly associated with MFS in either TNBC patients (P=0.499) or non-TNBC patients (P=0.536) in GSE12276 (treatment without radiotherapy). Among the four TNBC molecular subtypes, the c1 and c4 subtypes exhibited higher CTL infiltration and lower SMFS values than the c2 and c3 subtypes. In addition, SMFS was positively correlated with the abundance of endothelial cells (r=0.413, P<0.001).Conclusions The proposed model has the potential to predict MFS in TNBC patients after adjuvant radiotherapy. SMFS may represent a measurement of tumor immune suppression.


2021 ◽  
Vol 15 (1) ◽  
pp. 43-55
Author(s):  
Chao Yuan ◽  
Hongjun Yuan ◽  
Li Chen ◽  
Miaomiao Sheng ◽  
Wenru Tang

Background: Triple-negative breast cancer (TNBC) is characterized by fast tumor increase, rapid recurrence and natural metastasis. We aimed to identify a genetic signature for predicting the prognosis of TNBC. Materials & methods: We conducted a weighted correlation network analysis of datasets from the Gene Expression Omnibus. Multivariate Cox regression was used to construct a risk score model. Results: The multi-factor risk scoring model was meaningfully associated with the prognosis of patients with TBNC. The predictive power of the model was demonstrated by the time-dependent receiver operating characteristic curve and Kaplan–Meier curve, and verified using a validation set. Conclusion: We established a long noncoding RNA-based model for the prognostic prediction of TNBC.


Breast Care ◽  
2020 ◽  
pp. 1-9
Author(s):  
Rudolf Napieralski ◽  
Gabriele Schricker ◽  
Gert Auer ◽  
Michaela Aubele ◽  
Jonathan Perkins ◽  
...  

<b><i>Background:</i></b> PITX2 DNA methylation has been shown to predict outcomes in high-risk breast cancer patients after anthracycline-based chemotherapy. To determine its prognostic versus predictive value, the impact of PITX2 DNA methylation on outcomes was studied in an untreated cohort vs. an anthracycline-treated triple-negative breast cancer (TNBC) cohort. <b><i>Material and Methods:</i></b> The percent DNA methylation ratio (PMR) of paired-like homeodomain transcription factor 2 (PITX2) was determined by a validated methylation-specific real-time PCR test. Patient samples of routinely collected archived formalin-fixed paraffin-embedded (FFPE) tissue and clinical data from 144 TNBC patients of 2 independent cohorts (i.e., 66 untreated patients and 78 patients treated with anthracycline-based chemotherapy) were analyzed. <b><i>Results:</i></b> The risk of 5- and 10-year overall survival (OS) increased continuously with rising PITX2 DNA methylation in the anthracycline-treated population, but it increased only slightly during 10-year follow-up time in the untreated patient population. PITX2 DNA methylation with a PMR cutoff of 2 did not show significance for poor vs. good outcomes (OS) in the untreated patient cohort (HR = 1.55; <i>p</i> = 0.259). In contrast, the PITX2 PMR cutoff of 2 identified patients with poor (PMR &#x3e;2) vs. good (PMR ≤2) outcomes (OS) with statistical significance in the anthracycline-treated cohort (HR = 3.96; <i>p</i> = 0.011). The results in the subgroup of patients who did receive anthracyclines only (no taxanes) confirmed this finding (HR = 5.71; <i>p</i> = 0.014). <b><i>Conclusion:</i></b> In this hypothesis-generating study PITX2 DNA methylation demonstrated predominantly predictive value in anthracycline treatment in TNBC patients. The risk of poor outcome (OS) correlates with increasing PITX2 DNA methylation.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5590
Author(s):  
Alyssa Vito ◽  
Nader El-Sayes ◽  
Omar Salem ◽  
Yonghong Wan ◽  
Karen L. Mossman

The era of immunotherapy has seen an insurgence of novel therapies driving oncologic research and the clinical management of the disease. We have previously reported that a combination of chemotherapy (FEC) and oncolytic virotherapy (oHSV-1) can be used to sensitize otherwise non-responsive tumors to immune checkpoint blockade and that tumor-infiltrating B cells are required for the efficacy of our therapeutic regimen in a murine model of triple-negative breast cancer. In the studies herein, we have performed gene expression profiling using microarray analyses and have investigated the differential gene expression between tumors treated with FEC + oHSV-1 versus untreated tumors. In this work, we uncovered a therapeutically driven switch of the myeloid phenotype and a gene signature driving increased tumor cell killing.


2019 ◽  
Vol 20 (16) ◽  
pp. 1151-1157 ◽  
Author(s):  
Jia Yu ◽  
Jacqueline Zayas ◽  
Bo Qin ◽  
Liewei Wang

Triple-negative breast cancer (TNBC) accounts for 15–20% of all invasive breast cancers and tends to have aggressive histological features and poor clinical outcomes. Unlike, estrogen receptor- or HER2-positive diseases, TNBC patients currently lack the US FDA-approved targeted therapies. DNA methylation is a critical mechanism of epigenetic modification. It is well known that aberrant DNA methylation contributes to the malignant transformation of cells by silencing critical tumor suppressor genes. DNA methyltransferase inhibitors reactivate silenced tumor suppressor genes and result in tumor growth arrest, with therapeutic effects observed in patients with hematologic malignancies. The antitumor effect of these DNA methyltransferase inhibitors has also been explored in solid tumors, especially in TNBC that currently lacks targeted therapies.


2020 ◽  
Vol 184 (2) ◽  
pp. 325-334
Author(s):  
Ji-Yeon Kim ◽  
Hae Hyun Jung ◽  
Insuk Sohn ◽  
Sook Young Woo ◽  
Hyun Cho ◽  
...  

2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i11-i12
Author(s):  
Benjamin Vincent ◽  
Maria Sambade ◽  
Shengjie Chai ◽  
Marni Siegel ◽  
Luz Cuaboy ◽  
...  

Abstract INTRODUCTION: Approximately 50% of patients with metastatic triple negative breast cancer (TNBC) will develop brain metastases (BM). Routinely treated with radiotherapy and/or surgery, survival is generally less than one year. There are no approved systemic therapies to treat TNBC BM. We characterized the genomic and immune landscape of TNBC BM to foster the development of effective brain permeable anti-cancer agents, including immunotherapy. EXPERIMENTAL PROCEDURES: A clinically-annotated BCBM biobank of archival tissues was created under IRB approval. DNA (tumor/normal) and RNA (tumor) were extracted from TNBC primaries and BM; whole exome (WES) and RNA sequencing (RNASeq) was performed. Mutations were determined from WES as those co-identified by two variant callers (Strelka|Cadabra). Immune gene signature expression, molecular subtype identification, and T cell receptor repertoires were inferred from RNAseq. RESULTS: 32 TNBC patient tissues (14 primaries, 18 BCBM, 6 primary-BCBM matched), characterized as basal-like by PAM50, were analyzed. Top exome mutation calls included ten genes in ≥19% of BCBMs including TP53, ATM, and PIK3R1, and four genes in ≥18% of primaries including TP53 and PIK3R1. Many immune gene signatures were lower in BM compared to primaries including B cell, dendritic cell, regulatory T cell, and IgG cluster (p&lt; 0.05). A signature of PD-1 inhibition responsiveness was higher in BM compared with primaries (p&lt; 0.05). BCBM T cell receptor repertoires showed higher evenness and lower read count (both p &lt; 0.01) compared to primaries. CONCLUSIONS: TNBC BM compared to primaries that metastasize to the brain show lower immune gene signature expression, higher PD-1 inhibition response signature expression, and T cell receptor repertoire features less characteristic of an active antigen-specific response. Mutations common to TNBC BM and primaries include TP53 and PIK3R1. Given that non-BCBM (i.e. lung and melanoma) show response to checkpoint inhibitors, these findings collectively support further study of immunotherapy for TNBC BM.


Sign in / Sign up

Export Citation Format

Share Document