scholarly journals Alternative Splicing in Myeloid Malignancies

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1844
Author(s):  
Carmelo Gurnari ◽  
Simona Pagliuca ◽  
Valeria Visconte

Alternative RNA splicing (AS) is an essential physiologic function that diversifies the human proteome. AS also has a crucial role during cellular development. In fact, perturbations in RNA-splicing have been implicated in the development of several cancers, including myeloid malignancies. Splicing dysfunction can be independent of genetic lesions or appear as a direct consequence of mutations in components of the RNA-splicing machinery, such as in the case of mutations occurring in splicing factor genes (i.e., SF3B1, SRSF2, U2AF1) and their regulators. In addition, cancer cells exhibit marked gene expression alterations, including different usage of AS isoforms, possibly causing tissue-specific effects and perturbations of downstream pathways. This review summarizes several modalities leading to splicing diversity in myeloid malignancies.

Author(s):  
Fiona Haward ◽  
Magdalena M. Maslon ◽  
Patricia L. Yeyati ◽  
Nicolas Bellora ◽  
Jan N. Hansen ◽  
...  

AbstractShuttling RNA-binding proteins coordinate nuclear and cytoplasmic steps of gene expression. The SR family proteins regulate RNA splicing in the nucleus and a subset of them, including SRSF1, shuttles between the nucleus and cytoplasm affecting post-splicing processes. However, the physiological significance of this remains unclear. Here, we used genome editing to knock-in a nuclear retention signal (NRS) in Srsf1 to create a mouse model harboring an SRSF1 protein that is retained exclusively in the nucleus. Srsf1NRS/NRS mutants displayed small body size, hydrocephalus and immotile sperm, all traits associated with ciliary defects. We observed reduced translation of a subset of mRNAs and decreased abundance of proteins involved in multiciliogenesis, with disruption of ciliary ultrastructure and motility in cells derived from this mouse model. These results demonstrate that SRSF1 shuttling is used to reprogram gene expression networks in the context of high cellular demands, as observed here, during motile ciliogenesis.


RNA ◽  
2007 ◽  
Vol 13 (11) ◽  
pp. 1988-1999 ◽  
Author(s):  
M. Alberstein ◽  
M. Amit ◽  
K. Vaknin ◽  
A. O'Donnell ◽  
C. Farhy ◽  
...  

2019 ◽  
Vol 28 (16) ◽  
pp. 2763-2774 ◽  
Author(s):  
Nicola Jeffery ◽  
Sarah Richardson ◽  
David Chambers ◽  
Noel G Morgan ◽  
Lorna W Harries

Abstract Changes to islet cell identity in response to type 2 diabetes (T2D) have been reported in rodent models, but are less well characterized in humans. We assessed the effects of aspects of the diabetic microenvironment on hormone staining, total gene expression, splicing regulation and the alternative splicing patterns of key genes in EndoC-βH1 human beta cells. Genes encoding islet hormones [somatostatin (SST), insulin (INS), Glucagon (GCG)], differentiation markers [Forkhead box O1 (FOXO1), Paired box 6, SRY box 9, NK6 Homeobox 1, NK6 Homeobox 2] and cell stress markers (DNA damage inducible transcript 3, FOXO1) were dysregulated in stressed EndoC-βH1 cells, as were some serine arginine rich splicing factor splicing activator and heterogeneous ribonucleoprotein particle inhibitor genes. Whole transcriptome analysis of primary T2D islets and matched controls demonstrated dysregulated splicing for ~25% of splicing events, of which genes themselves involved in messenger ribonucleic acid processing and regulation of gene expression comprised the largest group. Approximately 5% of EndoC-βH1 cells exposed to these factors gained SST positivity in vitro. An increased area of SST staining was also observed ex vivo in pancreas sections recovered at autopsy from donors with type 1 diabetes (T1D) or T2D (9.3% for T1D and 3% for T2D, respectively compared with 1% in controls). Removal of the stressful stimulus or treatment with the AKT Serine/Threonine kinase inhibitor SH-6 restored splicing factor expression and reversed both hormone staining effects and patterns of gene expression. This suggests that reversible changes in hormone expression may occur during exposure to diabetomimetic cellular stressors, which may be mediated by changes in splicing regulation.


Genetics ◽  
2019 ◽  
Vol 212 (3) ◽  
pp. 931-951 ◽  
Author(s):  
Kasuen Kotagama ◽  
Anna L. Schorr ◽  
Hannah S. Steber ◽  
Marco Mangone

MicroRNAs (miRNAs) are known to modulate gene expression, but their activity at the tissue-specific level remains largely uncharacterized. To study their contribution to tissue-specific gene expression, we developed novel tools to profile putative miRNA targets in the Caenorhabditis elegans intestine and body muscle. We validated many previously described interactions and identified ∼3500 novel targets. Many of the candidate miRNA targets curated are known to modulate the functions of their respective tissues. Within our data sets we observed a disparity in the use of miRNA-based gene regulation between the intestine and body muscle. The intestine contained significantly more putative miRNA targets than the body muscle highlighting its transcriptional complexity. We detected an unexpected enrichment of RNA-binding proteins targeted by miRNA in both tissues, with a notable abundance of RNA splicing factors. We developed in vivo genetic tools to validate and further study three RNA splicing factors identified as putative miRNA targets in our study (asd-2, hrp-2, and smu-2), and show that these factors indeed contain functional miRNA regulatory elements in their 3′UTRs that are able to repress their expression in the intestine. In addition, the alternative splicing pattern of their respective downstream targets (unc-60, unc-52, lin-10, and ret-1) is dysregulated when the miRNA pathway is disrupted. A reannotation of the transcriptome data in C. elegans strains that are deficient in the miRNA pathway from past studies supports and expands on our results. This study highlights an unexpected role for miRNAs in modulating tissue-specific gene isoforms, where post-transcriptional regulation of RNA splicing factors associates with tissue-specific alternative splicing.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4500-4500
Author(s):  
Mariateresa Fulciniti ◽  
Michael A Lopez ◽  
Anil Aktas Samur ◽  
Eugenio Morelli ◽  
Hervé Avet-Loiseau ◽  
...  

Abstract Gene expression profile has provided interesting insights into the disease biology, helped develop new risk stratification, and identify novel druggable targets in multiple myeloma (MM). However, there is significant impact of alternative pre-mRNA splicing (AS) as one of the key transcriptome modifier. These spliced variants increases the transcriptomic complexity and its misregulation affect disease behavior impacting therapeutic consideration in various disease processes including cancer. Our large well annotated deep RNA sequencing data from purified MM cells data from 420 newly-diagnosed patients treated homogeneously have identified 1534 genes with one or more splicing events observed in at least 10% or more patients. Median alternative splicing event per patient was 595 (range 223 - 2735). These observed global alternative splicing events in MM involves aberrant splicing of critical growth and survival genes affects the disease biology as well as overall survival. Moreover, the decrease of cell viability observed in a large panel of MM cell lines after inhibition of splicing at the pre-mRNA complex and stalling at the A complex confirmed that MM cells are exquisitely sensitive to pharmacological inhibition of splicing. Based on these data, we further focused on understanding the molecular mechanisms driving aberrant alternative splicing in MM. An increasing body of evidence indicates that altered expression of regulatory splicing factors (SF) can have oncogenic properties by impacting AS of cancer-associated genes. We used our large RNA-seq dataset to create a genome wide global alterations map of SF and identified several splicing factors significantly dysregulated in MM compared to normal plasma cells with impact on clinical outcome. The splicing factor Serine and Arginine Rich Splicing Factor 1 (SRSF1), regulating initiation of spliceosome assembly, was selected for further evaluation, as its impact on clinical outcome was confirmed in two additional independent myeloma datasets. In gain-of (GOF) studies enforced expression of SRSF1 in MM cells significantly increased proliferation, especially in the presence of bone marrow stromal cells; and conversely, in loss-of function (LOF) studies, downregulation of SRSF1, using stable or doxy-inducible shRNA systems significantly inhibited MM cell proliferation and survival over time. We utilized SRSF1 mutants to dissect the mechanisms involved in the SRSF1-mediated MM growth induction, and observed that the growth promoting effect of SRSF1 in MM cells was mainly due to its splicing activity. We next investigated the impact of SRSF1 on allelic isoforms of specific gene targets by RNA-seq in LOF and confirmed in GOF studies. Splicing profiles showed widespread changes in AS induced by SRSF1 knock down. The most recurrent splicing events were skipped exon (SE) and alternative first (AF) exon splicing as compared to control cells. SE splice events were primarily upregulated and AF splice events were evenly upregulated and downregulated. Genes in which splicing events in these categories occurred mostly did not show significant difference in overall gene expression level when compared to control, following SRSF1 depletion. When analyzing cellular functions of SRSF1-regulated splicing events, we found that SRSF1 knock down affects genes in the RNA processing pathway as well as genes involved in cancer-related functions such as mTOR and MYC-related pathways. Splicing analysis was corroborated with immunoprecipitation (IP) followed by mass spectrometry (MS) analysis of T7-tagged SRSF1 MM cells. We have observed increased levels of SRSF phosphorylation, which regulates it's subcellular localization and activity, in MM cell lines and primary patient MM cells compared to normal donor PBMCs. Moreover, we evaluated the chemical compound TG003, an inhibitor of Cdc2-like kinase (CLK) 1 and 4 that regulate splicing by fine-tuning the phosphorylation of SR proteins. Treatment with TG003 decreased SRSF1 phosphorylation preventing the spliceosome assembly and inducing a dose dependent inhibition of MM cell viability. In conclusions, here we provide mechanistic insights into myeloma-related splicing dysregulation and establish SRSF1 as a tumor promoting gene with therapeutic potential. Disclosures Avet-Loiseau: Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Sanofi: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding. Munshi:OncoPep: Other: Board of director.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ting-Lin Pang ◽  
Zhan Ding ◽  
Shao-Bo Liang ◽  
Liang Li ◽  
Bei Zhang ◽  
...  

Interrupted exons in the pre-mRNA transcripts are ligated together through RNA splicing, which plays a critical role in the regulation of gene expression. Exons with a length ≤ 30 nt are defined as microexons that are unique in identification. However, microexons, especially those shorter than 8 nt, have not been well studied in many organisms due to difficulties in mapping short segments from sequencing reads. Here, we analyzed mRNA-seq data from a variety of Drosophila samples with a newly developed bioinformatic tool, ce-TopHat. In addition to the Flybase annotated, 465 new microexons were identified. Differentially alternatively spliced (AS) microexons were investigated between the Drosophila tissues (head, body, and gonad) and genders. Most of the AS microexons were found in the head and two AS microexons were identified in the sex-determination pathway gene fruitless.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Fiona Haward ◽  
Magdalena M Maslon ◽  
Patricia L Yeyati ◽  
Nicolas Bellora ◽  
Jan Niklas Hansen ◽  
...  

Shuttling RNA-binding proteins coordinate nuclear and cytoplasmic steps of gene expression. The SR family proteins regulate RNA splicing in the nucleus and a subset of them, including SRSF1, shuttles between the nucleus and cytoplasm affecting post-splicing processes. However, the physiological significance of this remains unclear. Here, we used genome editing to knock-in a nuclear retention signal (NRS) in Srsf1 to create a mouse model harboring an SRSF1 protein that is retained exclusively in the nucleus. Srsf1NRS/NRS mutants displayed small body size, hydrocephalus and immotile sperm, all traits associated with ciliary defects. We observed reduced translation of a subset of mRNAs and decreased abundance of proteins involved in multiciliogenesis, with disruption of ciliary ultrastructure and motility in cells and tissues derived from this mouse model. These results demonstrate that SRSF1 shuttling is used to reprogram gene expression networks in the context of high cellular demands, as observed here, during motile ciliogenesis.


2018 ◽  
Author(s):  
Kasuen Kotagama ◽  
Anna L Schorr ◽  
Hannah S Steber ◽  
Marco Mangone

ABSTRACTMicroRNAs (miRNAs) are known to modulate gene expression, but their activity at the tissue-specific level remains largely uncharacterized. In order to study their contribution to tissue-specific gene expression, we developed novel tools to profile miRNA targets in theC. elegansintestine and body muscle.We validated many previously described interactions, and identified ~3,500 novel targets. Many of the miRNA targets curated are known to modulate the functions of their respective tissues. Within our datasets we observed a disparity in the use of miRNA-based gene regulation between the intestine and body muscle. The intestine contained significantly more miRNA targets than the body muscle highlighting its transcriptional complexity. We detected an unexpected enrichment of RNA binding proteins targeted by miRNA in both tissues, with a notable abundance of RNA splicing factors.We developedin vivogenetic tools to validate and further study three RNA splicing factors identified as miRNA targets in our study (asd-2,hrp-2andsmu-2), and show that these factors indeed contain functional miRNA regulatory elements in their 3’UTRs that are able to repress their expression in the intestine. In addition, the alternative splicing pattern of their respective downstream targets (unc-60,unc-52,lin-10andret-1) is dysregulated when the miRNA pathway is disrupted.A re-annotation of the transcriptome data inC. elegansstrains that are deficient in the miRNA pathway from past studies supports and expands on our results. This study highlights an unexpected role for miRNAs in modulating tissue-specific gene isoforms, where post-transcriptional regulation of RNA splicing factors associates with tissue-specific alternative splicing.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 457-457
Author(s):  
Govardhan Anande ◽  
Ashwin Unnikrishnan ◽  
Nandan Deshpande ◽  
Sylvain Mareschal ◽  
Aarif M. N. Batcha ◽  
...  

RNA splicing is a fundamental biological process that generates protein diversity from a finite set of genes. Recurrent somatic mutations of genes involved in RNA splicing are present at high frequency in Myelodysplasia (up to 70%) but less so in Acute Myeloid Leukemia (AML; less than 20%). To investigate whether there were aberrant and recurrent RNA splicing events in the AML transcriptome that were associated with poor prognosis in the absence of splicing factor mutations, we developed a bioinformatics pipeline to systematically annotate and quantify alternative splicing events from RNA-sequencing data (Fig A). We first analysed publicly available RNA-seq data from The Cancer Genome Atlas (TCGA, n=170). We focussed on non-M3 AML patients with no splicing factor mutations (based on reported genomic sequencing and verified by re-analysis of RNA-seq data from all patients) who had received intensive chemotherapy. We segregated these patients based on their European Leukaemia Net (ELN) risk classification and identified 1290 alternatively spliced events impacting 910 genes that were significantly different (FDR<0.05) between all ELNAdv (n=41) versus all ELNFav patients (n=21, Fig B). The majority were exon skipping events (716 events, 62%, Fig B-C), followed by intron retention (201 events, 15.6%, Fig B). We next used RNA-seq data from a second non-M3 AML patient cohort (ClinSeq- Sweden; ELNAdv, n=75 and ELNFav, n=47), detecting 2507 events mapping to 1566 genes. Comparing across the two cohorts, 222 shared genes were detected to be affected by alternative splicing (Fig D). Ingenuity pathway analysis associated these genes with pathways related to protein translation. In order to prioritise those alternatively spliced events most likely to have a deleterious function, we developed an analytical framework to predict their impact on protein structure (Fig E). 87 alternatively spliced events, 25.81% of the commonly shared splicing events, relating to 78 genes (35.13% of all genes) were predicted to directly alter highly conserved protein domains within the affected genes, leading to either a complete (~25%, Fig E) or a partial loss of a domain (20%, Fig E). These in silico predictions are likely to be an underestimate of the true impact, as splicing alterations mapping to poorly annotated domains or affecting the tertiary structure of proteins would be missed. A number of splicing factors themselves were differentially spliced, with the alternative splicing predicted to have functional consequences. This was exemplified by hnRNPA1, a factor with well-established roles in splicing, is itself alternatively spliced in patients and predicted to be deleterious. Consistent with this, motif scanning analyses indicated that a number of mis-spliced transcripts had hnRNPA1 binding motifs (Fig F). To assess the impact of these alternatively spliced events (that were predicted to also disrupt highly conserved protein domains) on the transcriptome, we simultaneously quantified differential gene expression. IPA analysis of the 602 genes that were differentially expressed between ELNAdv and ELNFav patients and shared between both TCGA and ClinSeq cohorts indicated that they were associated with pathways (Fig G) that were distinct from those associated with aberrantly spliced genes (Fig D). A number of pathways related to inflammation were enriched amongst the genes observed to be upregulated in ELNAdv patients (Fig G). Network analyses integrating the alternatively spliced genes with differentially expressed genes revealed strong interactions (Fig H), indicating functional associations between these biological events. Given these strong network interactions, we investigated the potential prognostic significance of these alternatively spliced events. To this end, we utilised machine-learning methods to derive a "splicing signature" of four mis-spliced genes with a predictive capacity equivalent to the ELN (Fig I). The splicing signature further refined existing risk prediction algorithms to improve the classification of patients (Fig J). Taken together, we report the presence of extensive deregulation of RNA splicing in AML patients even in the absence of splicing factor mutations. Many of these events were shared in patients with adverse outcomes and their impact on the AML transcriptome points towards vulnerabilities that could be targeted. Figure Disclosures Unnikrishnan: Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Lehmann:TEVA: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Abbive: Membership on an entity's Board of Directors or advisory committees. Pimanda:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Author(s):  
Heike Stier

Alternative splicing is an important part of the regular process of gene expression. It controls time and tissue dependent expression of specific splice forms and depends on the correct function of about 100 splicing factor proteins of which many are the product of alternative splicing itself. It is therefore not surprising that even minor sequence disturbances can cause mis-spliced gene products with pathological effects. We survey some common diseases which can be traced back to a malfunction of alternative splicing including cystic fibrosis, beta-thalassemia, spinal muscular atrophy and cancer. Often cancer also results from even mis-spliced splicing factors leading to randomly spliced non-functional isoforms of several genes.


Sign in / Sign up

Export Citation Format

Share Document