scholarly journals Glycosidic vs. Aglycol Form of Natural Products as Putative Tyrosinase Inhibitors

Biophysica ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 458-473
Author(s):  
Maria Evgenia Politi ◽  
Kostas Bethanis ◽  
Trias Thireou ◽  
Elias Christoforides

Numerous natural products and designed molecules have been evaluated as tyrosinase inhibitors that impede enzymes’ oxidation activity. In the present study, new potent natural inhibitors were retrieved from the ZINC database by the similarity-screening of 37 previously reported tyrosinase inhibitors. The screening resulted in 42 candidate inhibitory molecules that were categorized into five groups. Molecular-docking analysis for these compounds, as well as for three others known for their inhibition activity (caffeic acid, naringenin, and gallic acid), was carried out against the tyrosinase structure from Agaricus bisporus (AbTYR). The top-scoring compounds were used for further comparative analysis with their corresponding naturally occurring glycosides. The results suggested that the glycosylated inhibitors could interact better with the enzyme than their aglycon forms. In order to further examine the role of the sugar side group of potent tyrosinase inhibitors, the dynamic behavior of two such pairs of glycosidic/aglycol forms (naringin–naringenin and icariin–icaritin) in their complexes with the enzyme were studied by means of 20-ns MD simulations. The increased number of intermolecular hydrogen bonds and their augmented lifetime between AbTYR and the glycosidic analogues showed that the naringin and icariin molecules form more stable complexes than naringenin and icaritin with tyrosinase, and thus are more potent inhibitors.

2021 ◽  
Vol 14 ◽  
Author(s):  
Arunaksharan Narayanankutty

Background: Hepatocellular carcinoma (HCC) is one of the prominent forms of cancer in developed countries. Incidence of HCC is well correlated with fatty liver disease and cirrhosis; the underlying chronic inflammation and lipotoxicity are thought to drive the process of HCC. Several biochemical cycles and molecular pathways are associated with the carcinogenesis of the liver, of which the PI3K/Akt signaling is a common converging point. Objective: The review aims to provide a summary on the role of PI3K/Akt signaling and its downstream effectors in the development of HCC and its progression. Further, the emphasis has been given to the role of natural inhibitors of the PI3K/Akt pathway in HCC prevention, which are under various levels of drug discovery. Methods: The required literature were collected from PubMed/Medline databases, as well as Scopus or Web of science. Results: It is evident that various signaling pathways activated by growth factors together with detoxification machinery and biochemical cycles converge to the PI3K/Akt signaling. The pathway plays a key role in the carcinogenesis, metastasis and drug resistance events of HCC cells and provides the growth and survival advantage. Natural products belonging to various classes such as terpenoids, flavonoids, saponins and stilbenoids are proven inhibitors of PI3K signaling and also found to inhibit HCC progression. Conclusion: PI3K/mTOR pathway inhibitors, especially, the different phytochemicals are emerged as promising as antiHCC agents. These molecules are shown to interfere with the PI3K signaling at various stages and therefore the PI3K targeted drugs may be a future for the chemotherapeutic arena.


2018 ◽  
Vol 25 (10) ◽  
pp. 1194-1240 ◽  
Author(s):  
Sara Vitalini ◽  
Serhat S. Cicek ◽  
Sebastian Granica ◽  
Christian Zidorn

Background: Dihydrostilbenoids, a diverse class of natural products differing from stilbenoids by the missing double bond in the ethylene chain linking the aromatic moieties, have been reported from fungi, mosses, ferns, and flowering plants. Objective: Occurrence, structure, and bioactivity of naturally occurring dihydroresveratrol type dihydrostilbenoids are discussed in this review. Method: A Reaxys database search for dihydroresveratrol derivatives with possible substitutions on all atoms, but excluding non-natural products and compounds featuring additional rings involving the ethyl connecting chain, was performed. Results: Structures include simple dihydroresveratrol derivatives, compounds substituted with complex side chains composed of acyl moieties and sugars, and compounds containing polycyclic cores attached to dihydrostilbenoid units. Dihydrostilbenoids have a wide spectrum of bioactivities ranging from expectable antioxidant and anti-inflammatory activities to interesting neuroprotective and anticancer activity. The anticancer activity in particular is very pronounced for some plant-derived dihydrostilbenoids and makes them interesting lead compounds for drug development. Apart from some reports on dihydroresveratrol derivatives as phytoalexins against plant-pathogenic fungi, only very limited information is available on the ecological role of these compounds for the organisms producing them. Conclusion: Dihydrostilbenoids are a class of natural products possessing significant biological activities; their scattered but not ubiquitous occurrence throughout the kingdoms of plants and fungi is not easily explained. We are convinced that future studies will identify new sources of dihydrostilbenoids, and we hope that the present review will inspire such studies and will help in directing such efforts to suitable source organisms and towards promising bioactivities.


Author(s):  
David R. Veblen

Extended defects and interfaces control many processes in rock-forming minerals, from chemical reactions to rock deformation. In many cases, it is not the average structure of a defect or interface that is most important, but rather the structure of defect terminations or offsets in an interface. One of the major thrusts of high-resolution electron microscopy in the earth sciences has been to identify the role of defect fine structures in reactions and to determine the structures of such features. This paper will review studies using HREM and image simulations to determine the structures of defects in silicate and oxide minerals and present several examples of the role of defects in mineral chemical reactions. In some cases, the geological occurrence can be used to constrain the diffusional properties of defects.The simplest reactions in minerals involve exsolution (precipitation) of one mineral from another with a similar crystal structure, and pyroxenes (single-chain silicates) provide a good example. Although conventional TEM studies have led to a basic understanding of this sort of phase separation in pyroxenes via spinodal decomposition or nucleation and growth, HREM has provided a much more detailed appreciation of the processes involved.


2019 ◽  
Author(s):  
Bella Grigorenko ◽  
Igor Polyakov ◽  
Alexander Nemukhin

<p>We report a mechanism of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) conversion by the mammalian type V adenylyl cyclase revealed in molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) simulations. We characterize a set of computationally derived enzyme-substrate (ES) structures showing an important role of coordination shells of magnesium ions in the solvent accessible active site. Several stable six-fold coordination shells of Mg<sub>A</sub><sup>2+ </sup>are observed in MD simulations of ES complexes. In the lowest energy ES conformation, the coordination shell of Mg<sub>A</sub><sup>2+ </sup>does not include the O<sub>δ1</sub> atom of the conserved Asp440 residue. Starting from this conformation, a one-step reaction mechanism is characterized which includes proton transfer from the ribose O<sup>3'</sup>H<sup>3' </sup>group in ATP to Asp440 via a shuttling water molecule and P<sup>A</sup>-O<sup>3A</sup> bond cleavage and O<sup>3'</sup>-P<sup>A</sup> bond formation. The energy profile of this route is consistent with the observed reaction kinetics. In a higher energy ES conformation, Mg<sub>A</sub><sup>2+</sup> is bound to the O<sub>δ1</sub>(Asp440) atom as suggested in the relevant crystal structure of the protein with a substrate analog. The computed energy profile initiated by this ES is characterized by higher energy expenses to complete the reaction. Consistently with experimental data, we show that the Asp440Ala mutant of the enzyme should exhibit a reduced but retained activity. All considered reaction pathways include proton wires from the O<sup>3'</sup>H<sup>3' </sup>group via shuttling water molecules. </p>


2019 ◽  
Vol 19 (10) ◽  
pp. 796-808 ◽  
Author(s):  
Kamal Uddin Zaidi ◽  
Sharique A. Ali ◽  
Ayesha Ali ◽  
Ishrat Naaz

Cutaneous pigmentation plays critical role in determining the color of skin along with photo protection of skin from dreadful effects of ultraviolet radiations. Conversely, abnormal accumulation of melanin is responsible for hyper pigmentary disorders such as melasma, senile lentigines and freckles. Because of the visible nature of dermatologic diseases, they have a considerable psychosomatic effect on affected patients. Tyrosinase inhibitors are molecules that interrelate in some way with the enzyme to prevent it from working in the normal manner. Past many decades witnessed the quest for the development of natural tyrosinase inhibitors due to imperative role played by tyrosinase in the process of melanogenesis and fungi or fruit enzymatic browning. Mechanism of pigmentation is characterized by the intact process of the synthesis of specialized black pigment within melanosomes. Melanin is synthesized by a cascade of enzymatic and chemical reactions. For this reason, melanin production is mainly controlled by the expression and activation of tyrosinase. In the current article, we discussed tyrosinase inhibitors from the natural sources, which can be an essential constituent of cosmetics products and depigmenting agents for the treatment of hyperpigmentory disorders.


2014 ◽  
Vol 12 (2) ◽  
pp. 278-285 ◽  
Author(s):  
Pablo Urena-Torres ◽  
Jean Souberbielle
Keyword(s):  

2019 ◽  
Vol 18 (8) ◽  
pp. 581-597 ◽  
Author(s):  
Ambreen Fatima ◽  
Yasir Hasan Siddique

Flavonoids are naturally occurring plant polyphenols found universally in all fruits, vegetables and medicinal plants. They have emerged as a promising candidate in the formulation of treatment strategies for various neurodegenerative disorders. The use of flavonoid rich plant extracts and food in dietary supplementation have shown favourable outcomes. The present review describes the types, properties and metabolism of flavonoids. Neuroprotective role of various flavonoids and the possible mechanism of action in the brain against the neurodegeneration have been described in detail with special emphasis on the tangeritin.


2018 ◽  
Vol 6 (1) ◽  
pp. 45-56
Author(s):  
Lalrinzuali Sailo ◽  
◽  
Meesala Krishna Murthy ◽  
Khandayataray Pratima ◽  
Vikas Kumar Roy ◽  
...  

Monosodium glutamate is naturally available non-essential amino acids, which found in naturally occurring foods and used as flavour enhancer worldwide. Monosodium glutamate is believed to be linked with diverse health problems. The aim of the study was toxic effects of monosodium glutamate (MSG) and the protective role of L-carnitine, light on the available literature from last 25 years about diverse toxicity studies which had been carried out on animal and human models. Google scholar, NCBI, PUBMED, EMBASE, Wangfang databases, and Web of Science databases were used to retrieve the available studies. MSG was linked with deleterious effects particularly in animals including induction of obesity, diabetes, hepatotoxic, neurotoxic and genotoxic effects showed in Literature. Few reports revealed increased hunger, food intake, and obesity in human subjects due to MSG consumption. Hepatotoxic, neurotoxic, and genotoxic effects of monosodium glutamate on humans carried out very limitedly. High consumption of monosodium glutamate may be linked with harmful health effects showed in available literatures. So, it is recommended to use common salt instead of MSG. Furthermore, intensive research is required to explore monosodium glutamate–related molecular and metabolic mechanisms. L-carnitine can protect from Hepatotoxic, neurotoxic, renal impairment and genotoxic effects functionally, biochemically and histopathologically with a corresponding reduction of oxidative stress.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sensen Zhang ◽  
Baolei Yuan ◽  
Jordy Homing Lam ◽  
Jun Zhou ◽  
Xuan Zhou ◽  
...  

AbstractPannexin1 (PANX1) is a large-pore ATP efflux channel with a broad distribution, which allows the exchange of molecules and ions smaller than 1 kDa between the cytoplasm and extracellular space. In this study, we show that in human macrophages PANX1 expression is upregulated by diverse stimuli that promote pyroptosis, which is reminiscent of the previously reported lipopolysaccharide-induced upregulation of PANX1 during inflammasome activation. To further elucidate the function of PANX1, we propose the full-length human Pannexin1 (hPANX1) model through cryo-electron microscopy (cryo-EM) and molecular dynamics (MD) simulation studies, establishing hPANX1 as a homo-heptamer and revealing that both the N-termini and C-termini protrude deeply into the channel pore funnel. MD simulations also elucidate key energetic features governing the channel that lay a foundation to understand the channel gating mechanism. Structural analyses, functional characterizations, and computational studies support the current hPANX1-MD model, suggesting the potential role of hPANX1 in pyroptosis during immune responses.


Sign in / Sign up

Export Citation Format

Share Document