scholarly journals Microelectrode Sensor for Real-Time Measurements of Nitrite in the Living Brain, in the Presence of Ascorbate

Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 277
Author(s):  
Tiago Monteiro ◽  
Cândida Dias ◽  
Cátia F. Lourenço ◽  
Ana Ledo ◽  
Rui M. Barbosa ◽  
...  

The impaired blood flow to the brain causes a decrease in the supply of oxygen that can result in cerebral ischemia; if the blood flow is not restored quickly, neuronal injury or death will occur. Under hypoxic conditions, the production of nitric oxide (●NO), via the classical L-arginine–●NO synthase pathway, is reduced, which can compromise ●NO-dependent vasodilation. However, the alternative nitrite (NO2−) reduction to ●NO, under neuronal hypoxia and ischemia conditions, has been viewed as an in vivo storage pool of ●NO, complementing its enzymatic synthesis. Brain research is thus demanding suitable tools to probe nitrite’s temporal and spatial dynamics in vivo. In this work, we propose a new method for the real-time measurement of nitrite concentration in the brain extracellular space, using fast-scan cyclic voltammetry (FSCV) and carbon microfiber electrodes as sensing probes. In this way, nitrite was detected anodically and in vitro, in the 5–500 µM range, in the presence of increasing physiological concentrations of ascorbate (100–500 µM). These sensors were then tested for real-time and in vivo recordings in the anesthetized rat hippocampus; using fast electrochemical techniques, local and reproducible transients of nitrite oxidation signals were observed, upon pressure ejection of an exogenous nitrite solution into the brain tissue. Nitrite microsensors are thus a valuable tool for investigating the role of this inorganic anion in brain redox signaling.

Author(s):  
Elisa Castagnola ◽  
Elaine M. Robbins ◽  
Kevin M. Woeppel ◽  
Moriah McGuier ◽  
Asiyeh Golabchi ◽  
...  

Melatonin (MT) has been recently considered an excellent candidate for the treatment of sleep disorders, neural injuries, and neurological diseases. To better investigate the actions of MT in various brain functions, real-time detection of MT concentrations in specific brain regions is much desired. Previously, we have demonstrated detection of exogenously administered MT in anesthetized mouse brain using square wave voltammetry (SWV). Here, for the first time, we show successful detection of exogenous MT in the brain using fast scan cyclic voltammetry (FSCV) on electrochemically pre-activated carbon fiber microelectrodes (CFEs). In vitro evaluation showed the highest sensitivity (28.1 nA/μM) and lowest detection limit (20.2 ± 4.8 nM) ever reported for MT detection at carbon surface. Additionally, an extensive CFE stability and fouling assessment demonstrated that a prolonged CFE pre-conditioning stabilizes the background, in vitro and in vivo, and provides consistent CFE sensitivity over time even in the presence of a high MT concentration. Finally, the stable in vivo background, with minimized CFE fouling, allows us to achieve a drift-free FSCV detection of exogenous administered MT in mouse brain over a period of 3 min, which is significantly longer than the duration limit (usually < 90 s) for traditional in vivo FSCV acquisition. The MT concentration and dynamics measured by FSCV are in good agreement with SWV, while microdialysis further validated the concentration range. These results demonstrated reliable MT detection using FSCV that has the potential to monitor MT in the brain over long periods of time.


Endocrinology ◽  
2005 ◽  
Vol 146 (1) ◽  
pp. 463-468 ◽  
Author(s):  
Elizabeth P. Bless ◽  
Heather J. Walker ◽  
Kwok W. Yu ◽  
J. Gabriel Knoll ◽  
Suzanne M. Moenter ◽  
...  

Neurons that synthesize GnRH control the reproductive axis and migrate over long distances and through different environments during development. Prior studies provided strong clues for the types of molecules encountered and movements expected along the migratory route. However, our studies provide the first real-time views of the behavior of GnRH neurons in the context of an in vitro preparation that maintains conditions comparable to those in vivo. The live views provide direct evidence of the changing behavior of GnRH neurons in their different environments, showing that GnRH neurons move with greater frequency and with more changes in direction after they enter the brain. Perturbations of guiding fibers distal to moving GnRH neurons in the nasal compartment influenced movement without detectable changes in the fibers in the immediate vicinity of moving GnRH neurons. This suggests that the use of fibers by GnRH neurons for guidance may entail selective signaling in addition to mechanical guidance. These studies establish a model to evaluate the influences of specific molecules that are important for their migration.


2004 ◽  
Author(s):  
Rainer Leitgeb ◽  
Leopold Schmetterer ◽  
Wolfgang Drexler ◽  
Fatmire Berisha ◽  
Christoph K. Hitzenberger ◽  
...  

Author(s):  
Beverly E. Maleeff ◽  
Timothy K. Hart ◽  
Stephen J. Wood ◽  
Ronald Wetzel

Alzheimer's disease is characterized post-mortem in part by abnormal extracellular neuritic plaques found in brain tissue. There appears to be a correlation between the severity of Alzheimer's dementia in vivo and the number of plaques found in particular areas of the brain. These plaques are known to be the deposition sites of fibrils of the protein β-amyloid. It is thought that if the assembly of these plaques could be inhibited, the severity of the disease would be decreased. The peptide fragment Aβ, a precursor of the p-amyloid protein, has a 40 amino acid sequence, and has been shown to be toxic to neuronal cells in culture after an aging process of several days. This toxicity corresponds to the kinetics of in vitro amyloid fibril formation. In this study, we report the biochemical and ultrastructural effects of pH and the inhibitory agent hexadecyl-N-methylpiperidinium (HMP) bromide, one of a class of ionic micellar detergents known to be capable of solubilizing hydrophobic peptides, on the in vitro assembly of the peptide fragment Aβ.


Author(s):  
Enrico D.F. Motti ◽  
Hans-Georg Imhof ◽  
Gazi M. Yasargil

Physiologists have devoted most attention in the cerebrovascular tree to the arterial side of the circulation which has been subdivided in three levels: 1) major brain arteries which keep microcirculation constant despite changes in perfusion pressure; 2) pial arteries supposed to be effectors regulating microcirculation; 3) intracerebral arteries supposed to be deprived of active cerebral blood flow regulating devices.The morphological search for microvascular effectors in the cerebrovascular bed has been elusive. The opaque substance of the brain confines in vivo investigation to the superficial pial arteries. Most morphologists had to limit their observation to the random occurrence of a favorable site in the practically two-dimensional thickness of diaphanized histological sections. It is then not surprising most investigators of the cerebral microcirculation refer to an homogeneous network of microvessels interposed between arterioles and venules.We have taken advantage of the excellent depth of focus afforded by the scanning electron microscope (SEM) to investigate corrosion casts obtained injecting a range of experimental animals with a modified Batson's acrylic mixture.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document