scholarly journals Transcriptomics of the Rooibos (Aspalathus linearis) Species Complex

BioTech ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 19
Author(s):  
Emily Amor Stander ◽  
Wesley Williams ◽  
Yamkela Mgwatyu ◽  
Peter van Heusden ◽  
Fanie Rautenbach ◽  
...  

Rooibos (Aspalathus linearis), widely known as a herbal tea, is endemic to the Cape Floristic Region of South Africa (SA). It produces a wide range of phenolic compounds that have been associated with diverse health promoting properties of the plant. The species comprises several growth forms that differ in their morphology and biochemical composition, only one of which is cultivated and used commercially. Here, we established methodologies for non-invasive transcriptome research of wild-growing South African plant species, including (1) harvesting and transport of plant material suitable for RNA sequencing; (2) inexpensive, high-throughput biochemical sample screening; (3) extraction of high-quality RNA from recalcitrant, polysaccharide- and polyphenol rich plant material; and (4) biocomputational analysis of Illumina sequencing data, together with the evaluation of programs for transcriptome assembly (Trinity, IDBA-Trans, SOAPdenovo-Trans, CLC), protein prediction, as well as functional and taxonomic transcript annotation. In the process, we established a biochemically characterized sample pool from 44 distinct rooibos ecotypes (1–5 harvests) and generated four in-depth annotated transcriptomes (each comprising on average ≈86,000 transcripts) from rooibos plants that represent distinct growth forms and differ in their biochemical profiles. These resources will serve future rooibos research and plant breeding endeavours.

2016 ◽  
Vol 1 (1) ◽  
pp. 4
Author(s):  
Marymol Koshy ◽  
Bushra Johari ◽  
Mohd Farhan Hamdan ◽  
Mohammad Hanafiah

Hypertrophic cardiomyopathy (HCM) is a global disease affecting people of various ethnic origins and both genders. HCM is a genetic disorder with a wide range of symptoms, including the catastrophic presentation of sudden cardiac death. Proper diagnosis and treatment of this disorder can relieve symptoms and prolong life. Non-invasive imaging is essential in diagnosing HCM. We present a review to deliberate the potential use of cardiac magnetic resonance (CMR) imaging in HCM assessment and also identify the risk factors entailed with risk stratification of HCM based on Magnetic Resonance Imaging (MRI).


2021 ◽  
Vol 43 (1) ◽  
pp. 36-51
Author(s):  
Alicja Ponder ◽  
Ewelina Hallmann ◽  
Martyna Kwolek ◽  
Dominika Średnicka-Tober ◽  
Renata Kazimierczak

Anthocyanins are widely distributed secondary metabolites that play an essential role in skin pigmentation of many plant organs and microorganisms. Anthocyanins have been associated with a wide range of biological and pharmacological properties. They are also effective agents in the prevention and treatment of many chronic diseases. Berries are particularly abundant in these compounds; therefore, their dietary intake has health-promoting effects. The aim of this study was to identify and determine the anthocyanin content in selected species and cultivars of berry fruits, such as raspberry, blackberry, red currant, blackcurrant, and highbush blueberry, widely consumed by Europeans. The concentrations of anthocyanins were determined by HPLC, identifying individual compounds: cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside, delphinidin-3-O-glucoside, delphinidin-3-O-rutinoside, cyanidin-3-O-rutinoside, delphinidin-3-O-galactoside, cyanidin-3-O-galactoside, and malvidin-3-O-galactoside. The experimental data showed that the selected species and cultivars of berry fruits differ significantly in the contents of anthocyanins. Among all species tested, blackberry and blackcurrant were characterized significantly by the highest content of anthocyanins (sum), while the lowest content was found in red currant fruits. Additionally, the content of individual anthocyanin compounds in particular species and cultivars was also different. Considering the high content of anthocyanins and their potential positive impact on human health and protection against disease, berries should be part of healthy nutrition.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
David Pellow ◽  
Alvah Zorea ◽  
Maraike Probst ◽  
Ori Furman ◽  
Arik Segal ◽  
...  

Abstract Background Metagenomic sequencing has led to the identification and assembly of many new bacterial genome sequences. These bacteria often contain plasmids: usually small, circular double-stranded DNA molecules that may transfer across bacterial species and confer antibiotic resistance. These plasmids are generally less studied and understood than their bacterial hosts. Part of the reason for this is insufficient computational tools enabling the analysis of plasmids in metagenomic samples. Results We developed SCAPP (Sequence Contents-Aware Plasmid Peeler)—an algorithm and tool to assemble plasmid sequences from metagenomic sequencing. SCAPP builds on some key ideas from the Recycler algorithm while improving plasmid assemblies by integrating biological knowledge about plasmids. We compared the performance of SCAPP to Recycler and metaplasmidSPAdes on simulated metagenomes, real human gut microbiome samples, and a human gut plasmidome dataset that we generated. We also created plasmidome and metagenome data from the same cow rumen sample and used the parallel sequencing data to create a novel assessment procedure. Overall, SCAPP outperformed Recycler and metaplasmidSPAdes across this wide range of datasets. Conclusions SCAPP is an easy to use Python package that enables the assembly of full plasmid sequences from metagenomic samples. It outperformed existing metagenomic plasmid assemblers in most cases and assembled novel and clinically relevant plasmids in samples we generated such as a human gut plasmidome. SCAPP is open-source software available from: https://github.com/Shamir-Lab/SCAPP.


The Analyst ◽  
2016 ◽  
Vol 141 (5) ◽  
pp. 1587-1610 ◽  
Author(s):  
Zou Xiaobo ◽  
Huang Xiaowei ◽  
Malcolm Povey

The main food quality traits of interest using non-invasive sensing techniques are sensory characteristics, chemical composition, physicochemical properties, health-protecting properties, nutritional characteristics and safety. A wide range of non-invasive sensing techniques, from optical, acoustical, electrical, to nuclear magnetic, X-ray, biosensor, microwave and terahertz, are organized according to physical principle.


Author(s):  
Mira Schmalenberg ◽  
Lena K. Weick ◽  
Norbert Kockmann

AbstractNucleation in continuously operated capillary coiled cooling crystallizers is experimentally investigated under the influence of ultrasound. It was found that there is no sharp boundary but rather a transition zone for nucleation under sonication. For this purpose, a tube with an inner diameter of 1.6 mm and a length of 6 m was winded in a coiled flow inverter (CFI) design and immersed into a cooled ultrasonic bath (37 kHz). The CFI design was chosen for improved radial mixing and narrow residence time distribution, which is also investigated. Amino acid l-alanine dissolved in deionized water is employed in a supersaturation range of 1.10 to 1.46 under quiet and sonicated conditions. Nucleation is non-invasive detected using a flow cell equipped with a microscope and camera. Graphical abstract Since the interest and demand for small-scale, continuous crystallization increases, seed crystals were generated in a coiled tube via sonication and optically investigated and characterized. No distinct threshold for nucleation could be determined in a wide range of supersaturations of l-alanine in water


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
L Girardi ◽  
M Serdaroğulları ◽  
C Patassini ◽  
S Caroselli ◽  
M Costa ◽  
...  

Abstract Study question What is the effect of varying diagnostic thresholds on the accuracy of Next Generation Sequencing (NGS)-based preimplantation genetic testing for aneuploidies (PGT-A)? Summary answer When single trophectoderm biopsies are tested, the employment of 80% upper threshold increases mosaic calls and false negative aneuploidy results compared to more stringent thresholds. What is known already Trophectoderm (TE) biopsy coupled with NGS-based PGT-A technologies are able to accurately predict Inner Cell Mass’ (ICM) constitution when uniform whole chromosome aneuploidies are considered. However, minor technical and biological inconsistencies in NGS procedures and biopsy specimens can result in subtle variability in analytical results. In this context, the stringency of thresholds employed for diagnostic calls can lead to incorrect classification of uniformly aneuploid embryos into the mosaic category, ultimately affecting PGT-A accuracy. In this study, we evaluated the diagnostic predictivity of different aneuploidy classification criteria by employing blinded analysis of chromosome copy number values (CNV) in multifocal blastocyst biopsies. Study design, size, duration The accuracy of different aneuploidy diagnostic cut-offs was assessed comparing chromosomal CNV in intra-blastocysts multifocal biopsies. Enrolled embryos were donated for research between June and September 2020. The Institutional Review Board at the Near East University approved the study (project: YDU/20l9/70–849). Embryos diagnosed with uniform chromosomal alterations (single or multiple) in their clinical TE biopsy (n = 27) were disaggregated into 5 portions: the ICM and 4 TE biopsies. Overall, 135 specimens were collected and analysed. Participants/materials, setting, methods Twenty-seven donated blastocysts were warmed and disaggregated in TE biopsies and ICM (n = 135 biopsies). PGT-A analysis was performed using Ion ReproSeq PGS kit and Ion S5 sequencer (ThermoFisher). Sequencing data were blindly analysed with Ion-Reporter software. Intra-blastocyst comparison of raw NGS data was performed employing different thresholds commonly used for aneuploidy classification. CNV for each chromosome were reported as aneuploid according to 70% or 80% thresholds. Categorical variables were compared using Fisher’s exact test. Main results and the role of chance In this study, a total of 50 aneuploid patterns in 27 disaggregated embryos were explored. Single TE biopsy results were considered as true positive when they displayed the same alteration detected in the ICM at levels above the 70% or 80% thresholds. Alternatively, alterations detected in the euploid or mosaic range were considered as false negative aneuploidy results. When the 70% threshold was applied, aneuploidy findings were confirmed in 94.5% of TE biopsies analyzed (n = 189/200; 95%CI=90.37–37.22), while 5.5% showed a mosaic profile (50–70%) but uniformly abnormal ICM. Positive (PPV) and negative predictive value (NPV) per chromosome were 100.0% (n = 189/189; 95%CI=98.07–100.00) and 99.5% (n = 2192/2203; 95%CI=99.11–99.75) respectively. When the upper cut-off was experimentally placed at 80% of abnormal cells, a significant decrease (p-value=0.0097) in the percentage of confirmed aneuploid calls was observed (86.5%; n = 173/200; 95%CI=80.97–90.91), resulting in mosaicism overcalling, especially in the high range (50–80%). Less stringent thresholds led to extremely high PPV (100.0%; n = 173/173; 95%CI=97.89–100.00), while NPV decreased to 98.8% (n = 2192/2219; 95%CI=98.30–99.23). Furthermore, no additional true mosaic patterns were identified with the use of wide range thresholds for aneuploidy classification. Limitations, reasons for caution This approach involved the analysis of aneuploidy CNV thresholds at the embryo level and lacked from genotyping-based confirmation analysis. Moreover, aneuploid embryos with known meiotic partial deletion/duplication were not included. Wider implications of the findings: The use of wide thresholds for detecting intermediate chromosomal CNV up to 80% doesn’t improve PGT-A ability to discriminate true mosaic from uniformly aneuploid embryos, lowering overall diagnostic accuracy. Hence, a proportion of the embryos diagnosed as mosaic using wide calling thresholds may actually be uniformly aneuploid and inadvertently transferred. Trial registration number N/A


Author(s):  
Hamil Shah ◽  
Abdullahi Inshaar ◽  
Chengzhe Zou ◽  
Shreyas Chaudhari ◽  
Saad Alharbi ◽  
...  

Physical deformation mechanisms are emerging as compelling and simple ways to adapt radio frequency (RF) characteristics of antennas in contrast to digital steering approaches acting on topologically fixed antennas. Concepts of physical reconfigurability also enable exceptional capabilities such as deployable and morphing antenna arrays that serve multiple functions and permit compact transport with ease. Yet, the emergent concepts lack broad understanding of effective approaches to integrate conformal, electrically conductive architectures with high-compliance foldable frameworks. To explore this essential interface where electrical demands and mechanical requirements may conflict, this research introduces a new class of origami-based tessellated antennas whose RF characteristics are self-tuned by physical reconfiguration of the antenna shape. E-textile materials are used to permit large antenna shape change while maintaining electrical conductivity. Dipole and patch antennas are considered as conventional antenna platforms upon which to innovate with the e-textile origami concept. Multiphysics modeling efforts establish the efficacy of foldable antenna geometries for broad tailoring of the RF characteristics. Experiments with proof-of-concept antennas confirm the large adaptability of wave radiation properties enabled by the reconfiguration of the e-textile origami surfaces. The results suggest that e-textile antennas can be integrated into clothing and mechanical structures, providing a non-invasive way of quantifying deformation for a wide range of applications.


2020 ◽  
Author(s):  
Florian Missey ◽  
Evgeniia Rusina ◽  
Emma Acerbo ◽  
Boris Botzanowski ◽  
Romain Carron ◽  
...  

AbstractIn patients with focal drug-resistant epilepsy, electrical stimulation from intracranial electrodes is frequently used for the localization of seizure onset zones and related pathological networks. The ability of electrically stimulated tissue to generate beta and gamma range oscillations, called rapid-discharges, is a frequent indication of an epileptogenic zone. However, a limit of intracranial stimulation is the fixed physical location and number of implanted electrodes, leaving numerous clinically and functionally relevant brain regions unexplored. Here, we demonstrate an alternative technique relying exclusively on nonpenetrating surface electrodes, namely an orientation-tunable form of temporally-interfering (TI) electric fields to target the CA3 of the mouse hippocampus which focally evokes seizure-like events (SLEs) having the characteristic frequencies of rapid-discharges, but without the necessity of the implanted electrodes. The orientation of the topical electrodes with respect to the orientation of the hippocampus is demonstrated to strongly control the threshold for evoking SLEs. Additionally, we demonstrate the use of square waves as an alternative to sine waves for TI stimulation. An orientation-dependent analysis of classic implanted electrodes to evoke SLEs in the hippocampus is subsequently utilized to support the results of the minimally-invasive temporally-interfering fields. The principles of orientation-tunable TI stimulation seen here can be generally applicable in a wide range of other excitable tissues and brain regions, overcoming several limitations of fixed electrodes which penetrate tissue.


2020 ◽  
Author(s):  
Shuo Li ◽  
Zorawar Noor ◽  
Weihua Zeng ◽  
Xiaohui Ni ◽  
Zuyang Yuan ◽  
...  

AbstractLiquid biopsy using cell-free DNA (cfDNA) is attractive for a wide range of clinical applications, including cancer detection, locating, and monitoring. However, developing these applications requires precise and sensitive calling of somatic single nucleotide variations (SNVs) from cfDNA sequencing data. To date, no SNV caller addresses all the special challenges of cfDNA to provide reliable results. Here we present cfSNV, a revolutionary somatic SNV caller with five innovative techniques to overcome and exploit the unique properties of cfDNA. cfSNV provides hierarchical mutation profiling, thanks to cfDNA’s complete coverage of the clonal landscape, and multi-layer error suppression. In both simulated datasets and real patient data, we demonstrate that cfSNV is superior to existing tools, especially for low-frequency somatic SNVs. We also show how the five novel techniques contribute to its performance. Further, we demonstrate a clinical application using cfSNV to select non-small-cell lung cancer patients for immunotherapy treatment.


2020 ◽  
Author(s):  
Sandeep Chakraborty

The metagenome of patients infected with SARS-Cov2 [1] has shown Prevotella to be a key player in immune response [2] in one Chinese study [3], just starting in another [4] and a host of other opportunistic pathogens in a study from San Diego county [5]. The metagenome can also be queried to find host response genes [5], as was done in monkey cells infected with SARS-Cov2 [6]Nanopore sequencing data from a familial cluster in ShenzhenThe patients were tested for 4 bacterial species - Bordetella pertussis, Bordetella parapertussis, Chlamydophila pneumoniae, and Mycoplasma pneumoniae. The sequencing data (Accid:SRR10948474, Nanopore) from five patients in a family cluster from Shenzhen who presented with unexplained pneumonia after returning from Wuhan (Table 1) shows a wide range of bacterial species - Lautropia, Cutibacterium, Haemophilus being most abundant. The presence of Campylobacter explains diarrhea seen in the patient [7,8]. Also, their tests should have detected Mycoplasma, since it is there in the data.Significant bacterial load with some bacterial species predominatingThe bacterial reads are about 20% (95K out of 500K reads). The viral load is also significant here (70K reads) [2]. They are in SI.familial/allsequences.fa. The number of bacterial species (with at least two reads) is 876 (SI.familial/list.allbacteria.txt). Thus, it is important to consider secondary infection, a possible reason why azithromycin (in addition to hydroxychloroquine) has given good initial results in a clinical trial [9].


Sign in / Sign up

Export Citation Format

Share Document