scholarly journals Visual Duration but Not Numerosity Is Distorted While Running

2022 ◽  
Vol 12 (1) ◽  
pp. 81
Author(s):  
Irene Petrizzo ◽  
Giovanni Anobile ◽  
Eleonora Chelli ◽  
Roberto Arrighi ◽  
David Charles Burr

There is increasing evidence that action and perception interact in the processing of magnitudes such as duration and numerosity. Sustained physical exercise (such as running or cycling) increases the apparent duration of visual stimuli presented during the activity. However, the effect of exercise on numerosity perception has not yet been investigated. Here, we asked participants to make either a temporal or a numerical judgment by comparing the duration or numerosity of standard stimuli displayed at rest with those presented while running. The results support previous reports in showing that physical activity significantly expands perceived duration; however, it had no effect on perceived numerosity. Furthermore, the distortions of the perceived durations vanished soon after the running session, making it unlikely that physiological factors such as heart rate underlie the temporal distortion. Taken together, these results suggest a domain-selective influence of the motor system on the perception of time, rather than a general effect on magnitude.

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Marta Suárez-Pinilla ◽  
Kyriacos Nikiforou ◽  
Zafeirios Fountas ◽  
Anil K. Seth ◽  
Warrick Roseboom

The neural basis of time perception remains unknown. A prominent account is the pacemaker-accumulator model, wherein regular ticks of some physiological or neural pacemaker are read out as time. Putative candidates for the pacemaker have been suggested in physiological processes (heartbeat), or dopaminergic mid-brain neurons, whose activity has been associated with spontaneous blinking. However, such proposals have difficulty accounting for observations that time perception varies systematically with perceptual content. We examined physiological influences on human duration estimates for naturalistic videos between 1–64 seconds using cardiac and eye recordings. Duration estimates were biased by the amount of change in scene content. Contrary to previous claims, heart rate, and blinking were not related to duration estimates. Our results support a recent proposal that tracking change in perceptual classification networks provides a basis for human time perception, and suggest that previous assertions of the importance of physiological factors should be tempered.


2017 ◽  
Vol 5 (2) ◽  
pp. 149-167 ◽  
Author(s):  
M. Lamotte ◽  
S. Droit-Volet

This study examined the difference in the perception of time between young and older adults in a temporal bisection task with four different duration ranges from a few milliseconds (500 ms) to several seconds (30 s). In addition, individual cognitive capacities (short-term memory, working memory, processing speed, attention) were assessed with different neuropsychological tests. The results showed a general effect of age on the variability of time judgment, indicating a lower sensitivity to time in the old than in the younger adults, regardless of the duration range tested. In addition, the results showed that the individual differences in time sensitivity were explained by attention capacities, which decline with aging.


2011 ◽  
Vol 279 (1730) ◽  
pp. 854-859 ◽  
Author(s):  
Welber Marinovic ◽  
Derek H. Arnold

Reliable estimates of time are essential for initiating interceptive actions at the right moment. However, our sense of time is surprisingly fallible. For instance, time perception can be distorted by prolonged exposure (adaptation) to movement. Here, we make use of this to determine if time perception and anticipatory actions rely on the same or on different temporal metrics. Consistent with previous reports, we find that the apparent duration of movement is mitigated by adaptation to more rapid motion, but is unchanged by adaptation to slower movement. By contrast, we find symmetrical effects of motion-adaptation on the timing of anticipatory interceptive actions, which are paralleled by changes in perceived speed for the adapted direction of motion. Our data thus reveal that anticipatory actions and perceived duration rely on different temporal metrics.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8707
Author(s):  
Binbin Jia ◽  
Zhongqiu Zhang ◽  
Tian Feng

Background Duration perception is an essential part of our cognitive and behavioral system, helping us interact with the outside world. An integrated model of timing, which states that the perceived duration of a given stimulus is based on the efficiency of information extraction, was recently set forth to improve current understanding of the representation and judgment of time. However, the prediction from this model that more efficient information extraction results in longer perceived duration has not been tested. Thus, the aim of this study is to investigate whether sports experts, as a group of individuals with information extraction superiority in situations relevant to their sport skill, have longer duration perceptions when they view expertise-related stimuli compared with others with no expertise/experience. Methods For this study, 81 subjects were recruited based on a prior power analysis. The sports experts group had 27 athletes with years of professional training in diving; a wrestler group and a nonathlete group, with each of these groups having 27 subjects, were used as controls. All participants completed a classic duration reproduction task for subsecond and suprasecond durations with both the diving images and general images involved. Results The divers reproduced longer durations for diving stimuli compared with general stimuli under both subsecond and suprasecond time ranges, while the other samples showed the opposite pattern. Furthermore, the years of training in diving were positively correlated with the magnitude of the prolonged reproduction duration when divers viewed diving stimuli. Moreover, the diver group showed a more precise duration perception in subsecond time range for general stimuli compared with the wrestlers and nonathletes. Conclusion The results suggest that sports experts perceive longer duration when viewing expertise-related stimuli compared with others with no expertise/experience.


2018 ◽  
Vol 6 (1) ◽  
pp. 90-123 ◽  
Author(s):  
Darren Rhodes

Time is a fundamental dimension of human perception, cognition and action, as the processing and cognition of temporal information is essential for everyday activities and survival. Innumerable studies have investigated the perception of time over the last 100 years, but the neural and computational bases for the processing of time remains unknown. Extant models of time perception are discussed before the proposition of a unified model of time perception that relates perceived event timing with perceived duration. The distinction between perceived event timing and perceived duration provides the current for navigating a river of contemporary approaches to time perception. Recent work has advocated a Bayesian approach to time perception. This framework has been applied to both duration and perceived timing, where prior expectations about when a stimulus might occur in the future (prior distribution) are combined with current sensory evidence (likelihood function) in order to generate the perception of temporal properties (posterior distribution). In general, these models predict that the brain uses temporal expectations to bias perception in a way that stimuli are ‘regularized’ i.e. stimuli look more like what has been seen before. As such, the synthesis of perceived timing and duration models is of theoretical importance for the field of timing and time perception.


Perception ◽  
2017 ◽  
Vol 46 (8) ◽  
pp. 1000-1007 ◽  
Author(s):  
Richard Schweitzer ◽  
Sabrina Trapp ◽  
Moshe Bar

Our sense of time is prone to various biases. For instance, one factor that can dilate an event's perceived duration is the violation of predictions; when a series of repeated stimuli is interrupted by an unpredictable oddball. On the other hand, when the probability of a repetition itself is manipulated, predictable conditions can also increase estimated duration. This suggests that manipulations of expectations have different or even opposing effects on time perception. In previous studies, expectations were generated because stimuli were repeated or because the likelihood of a sequence or a repetition was varied. In the natural environment, however, expectations are often built via associative processes, for example, the context of a kitchen promotes the expectation of plates, appliances, and other associated objects. Here, we manipulated such association-based expectations by using oddballs that were either contextually associated or nonassociated with the standard items. We find that duration was more strongly overestimated for contextually associated oddballs. We reason that top-down attention is biased toward associated information, and thereby dilates subjective duration for associated oddballs. Based on this finding, we propose an interplay between top-down attention and predictive processing in the perception of time.


1989 ◽  
Vol 1 (2) ◽  
pp. 136-152 ◽  
Author(s):  
Richard B. Ivry ◽  
Steven W. Keele

This study investigated the effects of different types of neurological deficits on timing functions. The performance of Parkinson, cerebellar, cortical, and peripheral neuropathy patients was compared to age-matched control subjects on two separate measures of timing functions. The first task involved the production of timed intervals in which the subjects attempted to maintain a simple rhythm. The second task measured the subjects' perceptual ability to discriminate between small differences in the duration of two intervals. The primacy of the cerebellum in timing functions was demonstrated by the finding that these were the only patients who showed a deficit in both the production and perception of timing tasks. The cerebellar group was found to have increased variability in performing rhythmic tapping and they were less accurate than the other groups in making perceptual discriminations regarding small differences in duration. Critically, this perceptual deficit appears to be specific to the perception of time since the cerebellar patients were unaffected in a control task measuring the perception of loudness. It is argued that the operation of a timing mechanism can be conceptualized as an isolable component of the motor control system. Furthermore, the results suggest that the domain of the cerebellar timing process is not limited to the motor system, but is employed by other perceptual and cognitive systems when temporally predictive computations are needed.


2018 ◽  
Author(s):  
Marta Suárez-Pinilla ◽  
Kyriacos Nikiforou ◽  
Zafeirios Fountas ◽  
Anil Seth ◽  
Warrick Roseboom

The neural basis of time perception remains unknown. A prominent account is the pacemaker-accumulator model, wherein regular ticks of some physiological or neural pacemaker are read out as time. Putative candidates for the pacemaker have been suggested in physiological processes (heartbeat), or dopaminergic mid-brain neurons, whose activity has been associated with spontaneous blinking. However, such proposals have difficulty accounting for observations that time perception varies systematically with perceptual content. We examined physiological influences on human duration estimates for naturalistic videos between 1-64 seconds using cardiac and eye recordings. Duration estimates were biased by the amount of change in scene content. Contrary to previous claims, heart rate, and blinking were not related to duration estimates. Our results support a recent proposal that tracking change in perceptual classification networks provides a basis for human time perception, and suggest that previous assertions of the importance of physiological factors should be tempered.


2017 ◽  
Vol 114 (42) ◽  
pp. E8913-E8921 ◽  
Author(s):  
Benjamin Morillon ◽  
Sylvain Baillet

In behavior, action and perception are inherently interdependent. However, the actual mechanistic contributions of the motor system to sensory processing are unknown. We present neurophysiological evidence that the motor system is involved in predictive timing, a brain function that aligns temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection and optimizing behavior. In a magnetoencephalography experiment involving auditory temporal attention, participants had to disentangle two streams of sound on the unique basis of endogenous temporal cues. We show that temporal predictions are encoded by interdependent delta and beta neural oscillations originating from the left sensorimotor cortex, and directed toward auditory regions. We also found that overt rhythmic movements improved the quality of temporal predictions and sharpened the temporal selection of relevant auditory information. This latter behavioral and functional benefit was associated with increased signaling of temporal predictions in right-lateralized frontoparietal associative regions. In sum, this study points at a covert form of auditory active sensing. Our results emphasize the key role of motor brain areas in providing contextual temporal information to sensory regions, driving perceptual and behavioral selection.


1981 ◽  
Vol 52 (3) ◽  
pp. 803-817 ◽  
Author(s):  
Kathleen H. Kowal

Time estimates of 12 intervals of 15 to 65 sec. duration were obtained from 30 subjects by one of two methods, magnitude estimation and cross-modal matching. Three kinds of sequences of musical notes were presented during stimulus intervals: repetitive, melodic, and random. Within all sequences, notes were of equal duration and with equal pauses between them. In all cases, the relationship between perceived and physical time is consistent with Stevens' power law. Exponents derived from both kinds of estimates were significantly affected by the content of the interval. Exponents derived for repetitive sequences were not different from 1 and were significantly larger than exponents derived from random or melodic sequences. These results are inconsistent with the view that the predictability, familiarity, or codability of events occurring in the stimulus interval is inversely related to the perceived duration of that interval. There is some indication that the effect of the content of the interval on judgments of duration varies with the magnitude of the duration being judged. Perhaps the relationship holds only within certain parameters and, when these are exceeded, other factors mask the effect. A two-process theory of time perception, one which considers these other factors and explains the present results, is proposed.


Sign in / Sign up

Export Citation Format

Share Document