scholarly journals A Life Cycle Assessment of Two Residential Buildings Using Two Different LCA Database-Software Combinations: Recognizing Uniformities and Inconsistencies

Buildings ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 20 ◽  
Author(s):  
Nargessadat Emami ◽  
Jukka Heinonen ◽  
Björn Marteinsson ◽  
Antti Säynäjoki ◽  
Juha-Matti Junnonen ◽  
...  

Traditionally, the emissions embodied in construction materials have not been considered important; however, they are becoming crucial due to the short time-frame in which the emissions should be reduced. Moreover, evaluating the environmental burden of construction materials has proven problematic and the reliability of the reported impact estimates is questionable. More reliable information from the construction sector is thus urgently needed to back and guide decision-making. Currently, the building sector environmental impact assessments predominantly employ commercial software with environmental impact databases and report results without knowledge about the impact of the software/database choice on the results. In this study, estimates for the embodied environmental impacts of residential construction from the two most widely used life cycle assessment (LCA) database-software combinations, ecoinvent with SimaPro software and GaBi, are compared to recognize the uniformities and inconsistencies. The impacts caused by two residential buildings of different types, a concrete-element multi-story residential building and a detached wooden house, both located in Finland, were assessed, including all building systems with a high level of detail. Based on the ReCiPe Midpoint method, fifteen impact categories were estimated and compared. The results confirm that the tool choice significantly affects the outcome. For the whole building, the difference is significant, around 15%, even in the most widely assessed category of Climate Change, and yields results that lean in different directions for the two cases. In the others, the estimates are entirely different, 40% or more in the majority of the categories and up to several thousand percentages of difference. The main conclusion is that extensive work is still urgently needed to improve the reliability of LCA tools in the building sector in order to provide reliable and trustworthy information for policy-making.

2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


2018 ◽  
Vol 10 (8) ◽  
pp. 2820 ◽  
Author(s):  
Hyojin Lim ◽  
Sungho Tae ◽  
Seungjun Roh

In recent years, much research has been conducted internationally to quantitatively evaluate the environmental impact of buildings in order to reduce greenhouse gas emissions and address associated environmental problems. With this in mind, the Green Standard for Energy and Environmental Design (G-SEED) in South Korea was revised in 2016. However, the various possible evaluation methods make it difficult to conduct building life cycle assessment. Moreover, compared to research on residential buildings, life cycle assessment research on non-residential buildings is scarce. Therefore, this study analyzes primary building materials for life cycle assessment of current non-residential buildings to support Korean G-SEED requirements. Design documents for various non-residential buildings are obtained, and the types and numbers of materials used in production are determined. Next, the primary building materials contributing high cumulative weight based on the ISO14040 series of standards are analyzed. We then review the most commonly-used building materials while considering non-residential building types and structures. In addition, construction material reliability is evaluated using the environmental impact unit value. With our results, by suggesting the primary building materials in non-residential buildings, efficient life cycle assessment of non-residential buildings is possible in terms of time and cost.


2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 1943-1955
Author(s):  
Aleksandar Petrovski ◽  
Jelena Ivanovic-Sekularac ◽  
Nenad Sekularac

The residential sector in Republic of North Macedonia, situated in south-east Europe, is responsible for the consumption of significant amounts of resources and for the production of large amount of emissions and waste. The increased application of wood products can substantially improve these conditions and contribute towards increasing the sustainability in the construction industry and the creation of sustainable homes. The contribution of this paper is the simulation of four different alternatives of residential buildings in the Republic of North Macedonia, evaluated in terms of energy performance and life-cycle assessment for the "cradle to gate" phase. The results of this study revealed that by replacing conventional concrete and masonry constructions with wooden constructions in low-rise family houses, the carbon emissions can be reduced up to 145%. The contribution of this paper is the simulation and analysis of the energy performance by using building performance simulation tools and life-cycle assessment of a residential building and its optimization through several models. The results give significant insight on the influence that the different construction materials have on the environment and buildings performance. Also, the research enables stimulation of the construction industry in utilizing wooden structures and delivering legislation that could increase their use. These actions would provide means for the development of sustainable buildings, neighborhoods and sustainable development of the Republic of North Macedonia.


2021 ◽  
Vol 11 (9) ◽  
pp. 3820
Author(s):  
Noelia Llantoy ◽  
Gabriel Zsembinszki ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

With the aim of contributing to achieving the decarbonization of the energy sector, the environmental impact of an innovative system to produce heating and domestic hot water for heating demand-dominated climates is assessed is evaluated. The evaluation is conducted using the life cycle assessment (LCA) methodology and the ReCiPe and IPCC GWP indicators for the manufacturing and operation stages, and comparing the system to a reference one. Results show that the innovative system has a lower overall impact than the reference one. Moreover, a parametric study to evaluate the impact of the refrigerant is carried out, showing that the impact of the overall systems is not affected if the amount of refrigerant or the impact of refrigerant is increased.


2021 ◽  
Vol 13 (13) ◽  
pp. 7386
Author(s):  
Thomas Schaubroeck ◽  
Simon Schaubroeck ◽  
Reinout Heijungs ◽  
Alessandra Zamagni ◽  
Miguel Brandão ◽  
...  

To assess the potential environmental impact of human/industrial systems, life cycle assessment (LCA) is a very common method. There are two prominent types of LCA, namely attributional (ALCA) and consequential (CLCA). A lot of literature covers these approaches, but a general consensus on what they represent and an overview of all their differences seems lacking, nor has every prominent feature been fully explored. The two main objectives of this article are: (1) to argue for and select definitions for each concept and (2) specify all conceptual characteristics (including translation into modelling restrictions), re-evaluating and going beyond findings in the state of the art. For the first objective, mainly because the validity of interpretation of a term is also a matter of consensus, we argue the selection of definitions present in the 2011 UNEP-SETAC report. ALCA attributes a share of the potential environmental impact of the world to a product life cycle, while CLCA assesses the environmental consequences of a decision (e.g., increase of product demand). Regarding the second objective, the product system in ALCA constitutes all processes that are linked by physical, energy flows or services. Because of the requirement of additivity for ALCA, a double-counting check needs to be executed, modelling is restricted (e.g., guaranteed through linearity) and partitioning of multifunctional processes is systematically needed (for evaluation per single product). The latter matters also hold in a similar manner for the impact assessment, which is commonly overlooked. CLCA, is completely consequential and there is no limitation regarding what a modelling framework should entail, with the coverage of co-products through substitution being just one approach and not the only one (e.g., additional consumption is possible). Both ALCA and CLCA can be considered over any time span (past, present & future) and either using a reference environment or different scenarios. Furthermore, both ALCA and CLCA could be specific for average or marginal (small) products or decisions, and further datasets. These findings also hold for life cycle sustainability assessment.


Author(s):  
H. Harter ◽  
B. Willenborg ◽  
W. Lang ◽  
T. H. Kolbe

Abstract. Reducing the demand for non-renewable resources and the resulting environmental impact is an objective of sustainable development, to which buildings contribute significantly. In order to realize the goal of reaching a climate-neutral building stock, it must first be analyzed and evaluated in order to develop optimization strategies. The life cycle based consideration and assessment of buildings plays a key role in this process. Approaches and tools already exist for this purpose, but they mainly take the operational energy demand of buildings and not a life cycle based approach into account, especially when assessing technical building services (TBS). Therefore, this paper presents and applies a methodical approach for the life cycle based assessment of the TBS of large residential building stocks, based on semantic 3D city models (CityGML). The methodical approach developed for this purpose describes the procedure for calculating the operational energy demand (already validated) and the heating load of the building, the dimensioning of the TBS components and the calculation of the life cycle assessment. The application of the methodology is illustrated in a case study with over 115,000 residential buildings from Munich, Germany. The study shows that the methodology calculates reliable results and that a significant reduction of the life cycle based energy demand can be achieved by refurbishment measures/scenarios. Nevertheless, the goal of achieving a climate-neutral building stock is a challenge from a life cycle perspective.


2021 ◽  
Vol 12 (5) ◽  
pp. 6504-6515

With the development of additive manufacturing technology, 3D bone tissue engineering scaffolds have evolved. Bone tissue engineering is one of the techniques for repairing bone abnormalities caused by a variety of circumstances, such as injuries or the need to support damaged sections. Many bits of research have gone towards developing 3D bone tissue engineering scaffolds all across the world. The assessment of the environmental impact, on the other hand, has received less attention. As a result, the focus of this study is on developing a life cycle assessment (LCA) model for 3D bone tissue engineering scaffolds and evaluating potential environmental impacts. One of the methodologies to evaluating a complete environmental impact assessment is life cycle assessment (LCA). The cradle-to-grave method will be used in this study, and GaBi software was used to create the analysis for this study. Previous research on 3D bone tissue engineering fabrication employing poly(ethylene glycol) diacrylate (PEGDA) soaked in dimethyl sulfoxide (DMSO), and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as a photoinitiator will be reviewed. Meanwhile, digital light processing (DLP) 3D printing is employed as the production technique. The GaBi program and the LCA model developed to highlight the potential environmental impact. This study shows how the input and output of LCA of 3D bone tissue engineering scaffolds might contribute to environmental issues such as air, freshwater, saltwater, and industrial soil emissions. The emission contributing to potential environmental impacts comes from life cycle input, electricity and transportation consumption, manufacturing process, and material resources. The results from this research can be used as an indicator for the researcher to take the impact of the development of 3D bone tissue engineering on the environment seriously.


2013 ◽  
Vol 4 (2) ◽  
pp. 103-109 ◽  
Author(s):  
E. Klaversma ◽  
A. W. C. van der Helm ◽  
J. W. N. M. Kappelhof

Waternet, the water cycle company of Amsterdam and surrounding areas, uses the life cycle assessment (LCA) method to evaluate the environmental impact of investment decisions and to determine the potential reduction of direct and indirect greenhouse gas (GHG) emissions of different alternatives. This approach enables Waternet to fulfil its corporate objective to improve sustainability and to become climate neutral by 2020. Three example studies that give a good overview of the use of LCAs at Waternet and problems encountered are discussed: phosphate removal and recovery from wastewater, pH correction of drinking water with carbon dioxide (CO2) and materials for drinking water distribution pipes. The environmental impact assessments were performed in SimaPro 7 using the ReCiPe method and the Intergovernmental Panel on Climate Change Global Warming Potential (IPCC GWP) 100a method. The Ecoinvent 2.0 and 2.2 databases were used for the material and process data. From the examples described, it can be concluded that only the phosphate removal case had a significant effect on the climate footprint. The article discusses applications and limitations of the LCA technique. The most important limitation is that the impact of water consumption and the possible impact of effluent compounds to surface water are not considered within the used methods.


2005 ◽  
Vol 895 ◽  
Author(s):  
Antonia Moropoulou ◽  
Christopher Koroneos ◽  
Maria Karoglou ◽  
Eleni Aggelakopoulou ◽  
Asterios Bakolas ◽  
...  

AbstractOver the years considerable research has been conducted on masonry mortars regarding their compatibility with under restoration structures. The environmental dimension of these materials may sometimes be a prohibitive factor in the selection of these materials. Life Cycle Assessment (LCA) is a tool that can be used to assess the environmental impact of the materials. LCA can be a very useful tool in the decision making for the selection of appropriate restoration structural material. In this work, a comparison between traditional type of mortars and modern ones (cement-based) is attempted. Two mortars of traditional type are investigated: with aerial lime binder, with aerial lime and artificial pozzolanic additive and one with cement binder. The LCA results indicate that the traditional types of mortars are more sustainable compared to cementbased mortars. For the impact assessment, the method used is Eco-indicator 95


2018 ◽  
Vol 10 (8) ◽  
pp. 2748 ◽  
Author(s):  
Diana Carolina Gámez-García ◽  
José Manuel Gómez-Soberón ◽  
Ramón Corral-Higuera ◽  
Héctor Saldaña-Márquez ◽  
María Consolación Gómez-Soberón ◽  
...  

This research focuses on a comparison of 20 external wall systems that are conventionally used in Spanish residential buildings, from a perspective based on the product and construction process stages of the life cycle assessment. The primary objective is to provide data that allow knowing the environmental behavior of walls built with materials and practices conventionally. This type of analysis will enable promoting the creation of regulations that encourage the use of combinations of materials that generate the most environmentally suitable result, and in turn, contribute to the strengthening of the embodied stages study of buildings and their elements. The results indicate that the greatest impact arises in the product stage (90.9%), followed by the transport stage (8.9%) and the construction process stage (<1%). Strategies (such as the use of large-format pieces and the controlled increase in thickness of the thermal insulation) can contribute to reducing the environmental impact; on the contrary, practices such as the use of small-format pieces and laminated plasterboard can increase the environmental burden. The prediction of the environmental behavior (simulation equation) allows these possible impacts to be studied in a fast and simplified way.


Sign in / Sign up

Export Citation Format

Share Document