scholarly journals Earthquake Response of Cold-Formed Steel-Based Building Systems: An Overview of the Current State of the Art

Buildings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 228 ◽  
Author(s):  
Gianmaria Di Lorenzo ◽  
Attilio De Martino

Building systems fabricated with cold-formed steel (CFS) profiles and members made of wood, gypsum, or other materials allow solving a range of issues arising in common constructional elements thanks to their advantages, such as lightness, strength, durability, physical stability, sustainability, and cost-effectiveness. As a result of this inherent competitiveness of CFS based buildings, their use has been gradually increasing in recent years both in the field of structural systems as non-structural architectural components and, above all, in the area of earthquake resistant buildings, where lightness play a key role. After a general introduction, the paper gives an overview of the current codification and ongoing research on CFS non-structural architectural and structural systems. Finally, the main conclusions are summarised, and possible future developments are outlined.

ISRN Robotics ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Ian D. Walker

This paper describes and discusses the history and state of the art of continuous backbone robot manipulators. Also known as continuum manipulators, these robots, which resemble biological trunks and tentacles, offer capabilities beyond the scope of traditional rigid-link manipulators. They are able to adapt their shape to navigate through complex environments and grasp a wide variety of payloads using their compliant backbones. In this paper, we review the current state of knowledge in the field, focusing particularly on kinematic and dynamic models for continuum robots. We discuss the relationships of these robots and their models to their counterparts in conventional rigid-link robots. Ongoing research and future developments in the field are discussed.


Author(s):  
M. J. Pender

This paper reviews the main issues to be addressed in the design of shallow and deep foundations which may be subject to earthquake loading. Information is presented on the soil properties required as well as the various design analysis techniques with a view to assessing the current state-of-the-art and highlighting areas in which further techniques need to be developed. The paper sets out, by way of an overview, a sequence of steps that a designer may follow in developing a foundation system. It is concluded that, at present, the greatest deficiencies lie in the areas of most potential use to designers. A secondary aim of the paper is to enhance communication between geotechnical and structural engineers on aseismic foundation design.


Author(s):  
José del R. Millán

This article introduces the field of brain-computer interfaces (BCI), which allows the control of devices without the generation of any active motor output but directly from the decoding of the user’s brain signals. Here we review the current state of the art in the BCI field, discussing the main components of such an interface and illustrating ongoing research questions and prototypes for controlling a large variety of devices, from virtual keyboards for communication to robotics systems to replace lost motor functions and even clinical interventions for motor rehabilitation after a stroke. The article concludes with some insights into the future of BCI.


1995 ◽  
Vol 38 (5) ◽  
pp. 1126-1142 ◽  
Author(s):  
Jeffrey W. Gilger

This paper is an introduction to behavioral genetics for researchers and practioners in language development and disorders. The specific aims are to illustrate some essential concepts and to show how behavioral genetic research can be applied to the language sciences. Past genetic research on language-related traits has tended to focus on simple etiology (i.e., the heritability or familiality of language skills). The current state of the art, however, suggests that great promise lies in addressing more complex questions through behavioral genetic paradigms. In terms of future goals it is suggested that: (a) more behavioral genetic work of all types should be done—including replications and expansions of preliminary studies already in print; (b) work should focus on fine-grained, theory-based phenotypes with research designs that can address complex questions in language development; and (c) work in this area should utilize a variety of samples and methods (e.g., twin and family samples, heritability and segregation analyses, linkage and association tests, etc.).


1976 ◽  
Vol 21 (7) ◽  
pp. 497-498
Author(s):  
STANLEY GRAND

10.37236/24 ◽  
2002 ◽  
Vol 1000 ◽  
Author(s):  
A. Di Bucchianico ◽  
D. Loeb

We survey the mathematical literature on umbral calculus (otherwise known as the calculus of finite differences) from its roots in the 19th century (and earlier) as a set of “magic rules” for lowering and raising indices, through its rebirth in the 1970’s as Rota’s school set it on a firm logical foundation using operator methods, to the current state of the art with numerous generalizations and applications. The survey itself is complemented by a fairly complete bibliography (over 500 references) which we expect to update regularly.


2009 ◽  
Vol 5 (4) ◽  
pp. 359-366 ◽  
Author(s):  
Osvaldo Santos-Filho ◽  
Anton Hopfinger ◽  
Artem Cherkasov ◽  
Ricardo de Alencastro

Author(s):  
Florian Kuisat ◽  
Fernando Lasagni ◽  
Andrés Fabián Lasagni

AbstractIt is well known that the surface topography of a part can affect its mechanical performance, which is typical in additive manufacturing. In this context, we report about the surface modification of additive manufactured components made of Titanium 64 (Ti64) and Scalmalloy®, using a pulsed laser, with the aim of reducing their surface roughness. In our experiments, a nanosecond-pulsed infrared laser source with variable pulse durations between 8 and 200 ns was applied. The impact of varying a large number of parameters on the surface quality of the smoothed areas was investigated. The results demonstrated a reduction of surface roughness Sa by more than 80% for Titanium 64 and by 65% for Scalmalloy® samples. This allows to extend the applicability of additive manufactured components beyond the current state of the art and break new ground for the application in various industrial applications such as in aerospace.


Sign in / Sign up

Export Citation Format

Share Document