scholarly journals Proteomic Analysis of Breast Cancer Resistance to the Anticancer Drug RH1 Reveals the Importance of Cancer Stem Cells

Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 972
Author(s):  
Dalius Kuciauskas ◽  
Nadezda Dreize ◽  
Marija Ger ◽  
Algirdas Kaupinis ◽  
Kristijonas Zemaitis ◽  
...  

Antitumor drug resistance remains a major challenge in cancer chemotherapy. Here we investigated the mechanism of acquired resistance to a novel anticancer agent RH1 designed to be activated in cancer cells by the NQO1 enzyme. Data show that in some cancer cells RH1 may act in an NQO1-independent way. Differential proteomic analysis of breast cancer cells with acquired resistance to RH1 revealed changes in cell energy, amino acid metabolism and G2/M cell cycle transition regulation. Analysis of phosphoproteomics and protein kinase activity by multiplexed kinase inhibitor beads showed an increase in the activity of protein kinases involved in the cell cycle and stemness regulation and downregulation of proapoptotic kinases such as JNK in RH1-resistant cells. Suppression of JNK leads to the increase of cancer cell resistance to RH1. Moreover, resistant cells have enhanced expression of stem cell factor (SCF) and stem cell markers. Inhibition of SCF receptor c-KIT resulted in the attenuation of cancer stem cell enrichment and decreased amounts of tumor-initiating cells. RH1-resistant cells also acquire resistance to conventional therapeutics while remaining susceptible to c-KIT-targeted therapy. Data show that RH1 can be useful to treat cancers in the NQO1-independent way, and targeting of the cancer stem cells might be an effective approach for combating resistance to RH1 therapy.

2020 ◽  
Vol 49 (14) ◽  
pp. 4211-4215
Author(s):  
Arvin Eskandari ◽  
Arunangshu Kundu ◽  
Alice Johnson ◽  
Sanjib Karmakar ◽  
Sushobhan Ghosh ◽  
...  

A multi-nuclear, triangular-shaped palladium(ii) complex is shown to equipotently kill bulk cancer cells and cancer stem cells (CSCs) in the micromolar range.


2015 ◽  
Vol 112 (45) ◽  
pp. E6215-E6223 ◽  
Author(s):  
Huimin Zhang ◽  
Haiquan Lu ◽  
Lisha Xiang ◽  
John W. Bullen ◽  
Chuanzhao Zhang ◽  
...  

Increased expression of CD47 has been reported to enable cancer cells to evade phagocytosis by macrophages and to promote the cancer stem cell phenotype, but the molecular mechanisms regulating CD47 expression have not been determined. Here we report that hypoxia-inducible factor 1 (HIF-1) directly activates transcription of the CD47 gene in hypoxic breast cancer cells. Knockdown of HIF activity or CD47 expression increased the phagocytosis of breast cancer cells by bone marrow-derived macrophages. CD47 expression was increased in mammosphere cultures, which are enriched for cancer stem cells, and CD47 deficiency led to cancer stem cell depletion. Analysis of datasets derived from thousands of patients with breast cancer revealed that CD47 expression was correlated with HIF target gene expression and with patient mortality. Thus, CD47 expression contributes to the lethal breast cancer phenotype that is mediated by HIF-1.


2020 ◽  
Author(s):  
Zi Lei ◽  
Yang-Li Hu ◽  
Qiang Feng ◽  
Li Wang ◽  
Xin-Yan Pan ◽  
...  

Abstract Background: CD44 is an important surface marker of breast cancer stem cells (BCSCs), but it is unclear whether it is involved in the stemness of BCSCs. This has limited the development of new therapeutic strategies for breast cancer. Previous studies have shown that many CD44 variants generated through alternative splicing are involved in the development of breast cancer, but their exact role in BCSCs remains unclear. Therefore, we analyzed the CD44 transcript variants in BCSCs derived from the MDA-MB-435 cell line, and aimed to investigate whether CD44s knockdown could affect the biological characteristics of BCSCs.Methods: CD44+/CD24- cells were isolated among the MDA-MB-435 cells by flow cytometry, and the CD44 transcript variants were detected by RT-PCR in CD44+/CD24- cells. Due to the high expression of CD44 standard splice isoform (CD44s) in CD44+/CD24- cells, CD44s knockdown was generated using small hairpin RNA (shRNA). The effects of CD44s knockdown on the biological characteristics of BCSCs was detected using cell proliferation assay, colony formation assay, cell cycle and apoptosis assay, tumor sphere formation assay, would-healing assay, and Matrigel invasion assay. Tumorigenesis of the CD44+/CD24- cells with CD44s knockdown was investigated in vivo with NOD/SCID mice. The expression of cancer stem cell stemness-related genes, such as Bcl-2, CCNE2, EGFR, MMP7, Muc1, and Myc was also detected by qPCR.Results: Our results revealed that the mRNA expression of CD44 transcript variants was heterogeneous, and CD44s is highly expressed in BCSCs. CD44s depletion inhibited the proliferation, made cell cycle stay in G0/G1 phase, promoted the apoptosis and necrosis of BCSCs, inhibited the ability of self-renewal and invasion along with the expression of cancer stem cell-related genes in BCSCs. Moreover, CD44s knockdown inhibited the tumorigenesis ability in vivo.Conclusion: Our findings revealed that CD44s is the predominant isoform expressed in BCSCs, and is an important molecule for maintaining the properties of BCSCs. Targeting CD44s in BCSCs may be a potential new direction for breast cancer treatment.


2021 ◽  
Author(s):  
Nitin Sabherwal ◽  
Andrew Rowntree ◽  
Jochen Kursawe ◽  
Nancy Papalopulu

AbstractHere, we study the dynamical expression of endogenously labelled Hes1, a transcriptional repressor implicated in controlling cell proliferation, to understand how cell-cycle length heterogeneity is generated in ER+ breast cancer cells. We find that Hes1 shows oscillatory expression and during the cell-cycle has a variable peak in G1, a trough around G1-S transition and a less variable second peak in G2/M. Compared to other subpopulations, the cell-cycle in CD44HighCD24Low cancer stem cells is longest and most variable. Most cells divide around the peak of the Hes1 expression wave but mitoses in slow dividing CD44HighCD24Low cells appear phase-shifted, resulting in a late-onset Hes1 peak in G1. The position, duration and shape of this peak, rather than the Hes1 expression levels, are good predictors of cell-cycle length. Diminishing Hes1 oscillations impairs proliferation, indicating their functional importance for efficient cell-cycle progression. We propose that the position of mitosis in relation to the Hes1 wave underlies cell-cycle length heterogeneity in cancer cell subpopulations.Significance statementTumours exhibit heterogeneities that are not due to mutations, including Cancer Stem Cells with different potencies. We show that the cancer stem cell state predisposed to dormancy in vivo has a highly variable and long cell-cycle. Using single-cell live-imaging for the transcriptional repressor Hes1 (a key molecule in cancer), we show a new type of oscillatory expression of Hes1 in all cells in the population. The most potent cancer stem cells tend to divide around the trough of the Hes1 oscillatory wave, a feature predictive of a long cell-cycle. A novel concept proposed here is that the position that a cell is with respect to the Hes1 wave when it divides is predictive of its prospective cell-cycle length and characteristic of its cellular sub-state.Abstract in picture


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yi-Ping Liu ◽  
Jin-Yu Heng ◽  
Xin-Yu Zhao ◽  
En-You Li

Abstract Background Breast cancer remains one of the most dreadful female malignancies globally, in which cancer stem cells (CSCs) play crucial functions. Circular RNAs have drawn great attention in cancer research area and propofol is a widely applied intravenous anesthetic agent. Methods: In the current study, we explored the function of circular RNA nucleolar and coiled-body phosphoprotein 1 (circNOLC1) in CSCs of breast cancer and the inhibitory impact of propofol on circNOLC1. Results The expression of circNOLC1 was induced in breast cancer tissues compared with the non-tumor tissues. The silencing of circNOLC1 was able to repress the viability of breast cancer cells. Meanwhile, the numbers of colony formation were suppressed by circNOLC1 knockdown in breast cancer cells. The inhibition of circNOLC1 reduced the invasion and migration ability of breast cancer cells. The mRNA and protein levels of E-cadherin were enhanced but Vimentin levels were reduced by the silencing of circNOLC1. The repression of circNOLC1 decreased the side population (SP) ratio in breast cancer cells. Meanwhile, the sphere formation ability of breast cancer cells was attenuated by the silencing of circNOLC1. The levels of ATP-binding cassette (ABC) superfamily G member 2 (ABCG2), c-Myc, B cell-specific Moloney murine leukemia virus integration site 1 (Bmi1), and SRY-box transcription factor 2 (Sox2) were repressed by the depletion of circNOLC1 in the cells. Regarding to the mechanism, circNOLC1 functioned as a competing endogenous RNAs (ceRNAs) for microRNA-365a-3p (miR-365a-3p) and the inhibition of miR-365a-3p rescued circNOLC1 depletion-repressed proliferation and cancer stem cell activity of breast cancer. MiR-365a-3p targeted signal transducer and activator of transcription 3 (STAT3) in breast cancer cells and circNOLC1 enhanced STAT3 expression by sponging miR-365a-3p. The overexpression of STAT3 could reverse miR-365a-3p or circNOLC1 depletion-inhibited proliferation and cancer stem cell properties of breast cancer. Interestingly, the expression of circNOLC1 and STAT3 was repressed by the treatment of propofol. The enrichment of STAT3 on circNOLC1 promoter was inhibited by propofol. The expression of circNOLC1 was suppressed by the silencing of STAT3 in the cells. The inhibition of circNOLC1 expression by propofol was rescued under the co-treatment of STAT3 overexpression. The overexpression of circNOLC1 rescued propofol-attenuated proliferation and cancer stem cell functions in vitro and in vivo. Conclusions Thus, we concluded that circNOLC1 contributes to CSCs properties and progression of breast cancer by targeting miR-365a-3p /STAT3 axis and propofol inhibited circNOLC1 by repressing STAT3 in a feedback mechanism.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Nathan Moore ◽  
Stephen Lyle

Long-lived cancer stem cells (CSCs) with indefinite proliferative potential have been identified in multiple epithelial cancer types. These cells are likely derived from transformed adult stem cells and are thought to share many characteristics with their parental population, including a quiescent slow-cycling phenotype. Various label-retaining techniques have been used to identify normal slow cycling adult stem cell populations and offer a unique methodology to functionally identify and isolate cancer stem cells. The quiescent nature of CSCs represents an inherent mechanism that at least partially explains chemotherapy resistance and recurrence in posttherapy cancer patients. Isolating and understanding the cell cycle regulatory mechanisms of quiescent cancer cells will be a key component to creation of future therapies that better target CSCs and totally eradicate tumors. Here we review the evidence for quiescent CSC populations and explore potential cell cycle regulators that may serve as future targets for elimination of these cells.


2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Wenxiang Wang ◽  
Yuxia Gao ◽  
Jing Hai ◽  
Jing Yang ◽  
Shufeng Duan

Abstract Increasing evidence shows that cancer stem cells are responsible for drug resistance and relapse of tumors. In breast cancer, human epidermal growth factor receptor 2 (HER2) induces Herceptin resistance by inducing cancer stem cells. In the present study, we explored the effect of HER2 on cancer stem cells induction and drug sensitivity of ovarian cancer cell lines. First, we found that HER2 overexpression (HER2 OE) induced, while HER2 knockdown (HER2 KD) decreased CD44+/CD24− population. Consistently, HER2 expression was closely correlated with the sphere formation efficiency (SFE) of ovarian cancer cells. Second, we found that NFκB inhibition by specific inhibitor JSH23 or siRNA targetting subunit p65 dramatically impaired the induction of ovarian cancer stem cells by HER2, indicating that NFκB mediated HER2-induced ovarian cancer stem cells. Third, we found that HER2 KD significantly attenuated the tumorigenicity of ovarian cancer cells. Further, we found that HER2 inhibition increased drastically the sensitivity of ovarian cancer cells to doxorubicin (DOX) or paclitaxel (PTX). Finally, we examined the correlation between HER2 status and stem cell-related genes expression in human ovarian tumor tissues, and found that expressions of OCT4, COX2, and Nanog were higher in HER2 positive tumors than in HER2 negative tumors. Consistently, the 5-year tumor-free survival rate of HER2 positive patients was dramatically lower than HER2 negative patients. Taken together, our data indicate that HER2 decreases drug sensitivity of ovarian cancer cells via inducing stem cell-like property.


2017 ◽  
Vol 46 (38) ◽  
pp. 12785-12789 ◽  
Author(s):  
C. Lu ◽  
K. Laws ◽  
A. Eskandari ◽  
K. Suntharalingam

Tetranuclear copper(ii) complexes containing multiple diclofenac and Schiff base moieties,1–4, are shown to kill bulk cancer cells and cancer stem cells (CSCs) with low micromolar potency.


2021 ◽  
Author(s):  
Ningwei Fu ◽  
Ning Fan ◽  
Wenchao Luo ◽  
Lijia Lv ◽  
Jing Li ◽  
...  

Abstract Purpose: TFEB is a key regulator of autophagy-lysosomal biogenesis pathways, while its dysregulation is highly prevalent in various human cancers, but the specific contribution to breast cancer remains poorly understood. The main purpose of this study is to explore the role of TFEB in breast cancer proliferation, metastasis and maintaining breast cancer stem cells (BCSCs) traits, thus uncovering its underlying mechanism.Methods: Bioinformatics, western blotting and immunohistochemical staining were applied to analyze the expression of TFEB in breast cancer. Stable down-regulation TFEB cells were established in MCF-7 and MDA-MB-231 breast cancer cell lines. MTT, clone formation, wound healing, transwell and 3D tumor invasion assays were used to evaluate the proliferation, migration and invasion ability of breast cancer cells. Mammosphere formation, immunocytochemical (ICC) staining were used to detect the effect of down-regulating TFEB on breast cancer stem cells. Results: we demonstrated that higher expression of TFEB was found in breast cancer. TFEB depletion had inhibitory effects on cellular proliferation, migration and invasion of breast cancer cells. Moreover, knockdown TFEB decreased mammosphere formation ability of BCSCs and expression of cancer stem cell markers. Autophagy-lysosomal related proteins were decreased by down regulation of TFEB. Conclusion: we uncovered a critical role of TFEB in breast cancer proliferation and metastasis, and BCSCs self-renewal and stemness. The underlying mechanisms involve in maintaining BCSCs traits, and dysregulating lysosome functions.


Sign in / Sign up

Export Citation Format

Share Document