scholarly journals Tumor Drug Distribution after Local Drug Delivery by Hyperthermia, In Vivo

Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1512 ◽  
Author(s):  
Helena Besse ◽  
Angelique Barten-van Rijbroek ◽  
Kim van der Wurff-Jacobs ◽  
Clemens Bos ◽  
Chrit Moonen ◽  
...  

Tumor drug distribution and concentration are important factors for effective tumor treatment. A promising method to enhance the distribution and the concentration of the drug in the tumor is to encapsulate the drug in a temperature sensitive liposome. The aim of this study was to investigate the tumor drug distribution after treatment with various injected doses of different liposomal formulations of doxorubicin, ThermoDox (temperature sensitive liposomes) and DOXIL (non-temperature sensitive liposomes), and free doxorubicin at macroscopic and microscopic levels. Only ThermoDox treatment was combined with hyperthermia. Experiments were performed in mice bearing a human fibrosarcoma. At low and intermediate doses, the largest growth delay was obtained with ThermoDox, and at the largest dose, the largest growth delay was obtained with DOXIL. On histology, tumor areas with increased doxorubicin concentration correlated with decreased cell proliferation, and substantial variations in doxorubicin heterogeneity were observed. ThermoDox treatment resulted in higher tissue drug levels than DOXIL and free doxorubicin for the same dose. A relation with the distance to the vasculature was shown, but vessel perfusion was not always sufficient to determine doxorubicin delivery. Our results indicate that tumor drug distribution is an important factor for effective tumor treatment and that its dependence on delivery formulation merits further systemic investigation.

2021 ◽  
Vol 22 (21) ◽  
pp. 11752
Author(s):  
Guigen Liu ◽  
Veronica Valvo ◽  
Sebastian W. Ahn ◽  
Devon Thompson ◽  
Kyle Deans ◽  
...  

Advances in the intratumor measurement of drug responses have included a pioneering biomedical microdevice for high throughput drug screening in vivo, which was further advanced by integrating a graded-index lens based two-dimensional fluorescence micro-endoscope to monitor tissue responses in situ across time. While the previous system provided a bulk measurement of both drug delivery and tissue response from a given region of the tumor, it was incapable of visualizing drug distribution and tissue responses in a three-dimensional (3D) way, thus missing the critical relationship between drug concentration and effect. Here we demonstrate a next-generation system that couples multiplexed intratumor drug release with continuous 3D spatial imaging of the tumor microenvironment via the integration of a miniaturized two-photon micro-endoscope. This enables optical sectioning within the live tissue microenvironment to effectively profile the entire tumor region adjacent to the microdevice across time. Using this novel microimaging-microdevice (MI-MD) system, we successfully demonstrated the four-dimensional imaging (3 spatial dimensions plus time) of local drug delivery in tissue phantom and tumors. Future studies include the use of the MI-MD system for monitoring of localized intra-tissue drug release and concurrent measurement of tissue responses in live organisms, with applications to study drug resistance due to nonuniform drug distribution in tumors, or immune cell responses to anti-cancer agents.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2021 ◽  
Author(s):  
Li-Nan Wang ◽  
Xiang-Lei Peng ◽  
Min Xu ◽  
Yuan-Bo Zheng ◽  
Yue-Ying Jiao ◽  
...  

AbstractHuman respiratory syncytial virus (RSV) infection is the leading cause of lower respiratory tract illness (LRTI), and no vaccine against LRTI has proven to be safe and effective in infants. Our study assessed attenuated recombinant RSVs as vaccine candidates to prevent RSV infection in mice. The constructed recombinant plasmids harbored (5′ to 3′) a T7 promoter, hammerhead ribozyme, RSV Long strain antigenomic cDNA with cold-passaged (cp) mutations or cp combined with temperature-sensitive attenuated mutations from the A2 strain (A2cpts) or further combined with SH gene deletion (A2cptsΔSH), HDV ribozyme (δ), and a T7 terminator. These vectors were subsequently co-transfected with four helper plasmids encoding N, P, L, and M2-1 viral proteins into BHK/T7-9 cells, and the recovered viruses were then passaged in Vero cells. The rescued recombinant RSVs (rRSVs) were named rRSV-Long/A2cp, rRSV-Long/A2cpts, and rRSV-Long/A2cptsΔSH, respectively, and stably passaged in vitro, without reversion to wild type (wt) at sites containing introduced mutations or deletion. Although rRSV-Long/A2cpts and rRSV-Long/A2cptsΔSH displayed  temperature-sensitive (ts) phenotype in vitro and in vivo, all rRSVs were significantly attenuated in vivo. Furthermore, BALB/c mice immunized with rRSVs produced Th1-biased immune response, resisted wtRSV infection, and were free from enhanced respiratory disease. We showed that the combination of ΔSH with attenuation (att) mutations of cpts contributed to improving att phenotype, efficacy, and gene stability of rRSV. By successfully introducing att mutations and SH gene deletion into the RSV Long parent and producing three rRSV strains, we have laid an important foundation for the development of RSV live attenuated vaccines.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 21-29 ◽  
Author(s):  
David R H Evans ◽  
Brian A Hemmings

Abstract PP2A is a central regulator of eukaryotic signal transduction. The human catalytic subunit PP2Acα functionally replaces the endogenous yeast enzyme, Pph22p, indicating a conservation of function in vivo. Therefore, yeast cells were employed to explore the role of invariant PP2Ac residues. The PP2Acα Y127N substitution abolished essential PP2Ac function in vivo and impaired catalysis severely in vitro, consistent with the prediction from structural studies that Tyr-127 mediates substrate binding and its side chain interacts with the key active site residues His-118 and Asp-88. The V159E substitution similarly impaired PP2Acα catalysis profoundly and may cause global disruption of the active site. Two conditional mutations in the yeast Pph22p protein, F232S and P240H, were found to cause temperature-sensitive impairment of PP2Ac catalytic function in vitro. Thus, the mitotic and cell lysis defects conferred by these mutations result from a loss of PP2Ac enzyme activity. Substitution of the PP2Acα C-terminal Tyr-307 residue by phenylalanine impaired protein function, whereas the Y307D and T304D substitutions abolished essential function in vivo. Nevertheless, Y307D did not reduce PP2Acα catalytic activity significantly in vitro, consistent with an important role for the C terminus in mediating essential protein-protein interactions. Our results identify key residues important for PP2Ac function and characterize new reagents for the study of PP2A in vivo.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Tong Chen ◽  
Qiang Chu ◽  
Mengyang Li ◽  
Gaorong Han ◽  
Xiang Li

AbstractElectrodynamic therapy (EDT) has recently emerged as a potential external field responsive approach for tumor treatment. While it presents a number of clear superiorities, EDT inherits the intrinsic challenges of current reactive oxygen species (ROS) based therapeutic treatments owing to the complex tumor microenvironment, including glutathione (GSH) overexpression, acidity and others. Herein for the first time, iron oxide nanoparticles are decorated using platinum nanocrystals (Fe3O4@Pt NPs) to integrate the current EDT with chemodynamic phenomenon and GSH depletion. Fe3O4@Pt NPs can effectively induce ROS generation based on the catalytic reaction on the surface of Pt nanoparticles triggered by electric field (E), and meanwhile it may catalyze intracellular H2O2 into ROS via Fenton reaction. In addition, Fe3+ ions released from Fe3O4@Pt NPs under the acidic condition in tumor cells consume GSH in a rapid fashion, inhibiting ROS clearance to enhance its antitumor efficacy. As a result, considerable in vitro and in vivo tumor inhibition phenomena are observed. This study has demonstrated an alternative concept of combinational therapeutic modality with superior efficacy.


Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 661-672 ◽  
Author(s):  
Jodi L Vogel ◽  
Vincent Geuskens ◽  
Lucie Desmet ◽  
N Patrick Higgins ◽  
Ariane Toussaint

Abstract Mutations in an N-terminal 70-amino acid domain of bacteriophage Mu's repressor cause temperature-sensitive DNA-binding activity. Surprisingly, amber mutations can conditionally correct the heat-sensitive defect in three mutant forms of the repressor gene, cts25 (D43-G), cts62 (R47-Q and cts71 (M28-I), and in the appropriate bacterial host produce a heat-stable Sts phenotype (for survival of temperature shifts). Sts repressor mutants are heat sensitive when in supE or supF hosts and heat resistant when in Sup° hosts. Mutants with an Sts phenotype have amber mutations at one of three codons, Q179, Q187, or Q190. The Sts phenotype relates to the repressor size: in Sup° hosts sts repressors are shorter by seven, 10, or 18 amino acids compared to repressors in supE or supF hosts. The truncated form of the sts62-1 repressor, which lacks 18 residues (Q179–V196), binds Mu operator DNA more stably at 42° in vitro compared to its full-length counterpart (cts62 repressor). In addition to influencing temperature sensitivity, the C-terminus appears to control the susceptibility to in vivo Clp proteolysis by influencing the multimeric structure of repressor.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yufu Zhu ◽  
Jun Jia ◽  
Gang Zhao ◽  
Xuyang Huang ◽  
Lansheng Wang ◽  
...  

Abstract Background The postoperative recurrence of malignant gliomas has presented a clinical conundrum currently. Worse, there is no standard treatment for these recurrent tumours. Therefore, novel promising methods of clinical treatment are urgently needed. Methods In this study, we synthesized reactive oxygen species (ROS)-triggered poly(propylene sulfide)60 (PPS60) mixed with matrix metalloproteinases (MMPs)-responsive triglycerol monostearate (T) lipids and TMZ. The mixed solution could self-assemble at 50 ℃ to generate hydrogels with MMPs- and ROS-responsiveness. We explored whether the T/PPS + TMZ hydrogel could achieve the MMP- and ROS-responsive delivery of TMZ and exert anti-glioma regrowth effects in vitro and in vivo. These results demonstrated that the T/PPS + TMZ hydrogel significantly improved the curative effect of TMZ to inhibit postsurgical recurrent glioma. Results The results confirmed the responsive release of TMZ encapsulated in the T/PPS + TMZ hydrogel, and the hydrogel showed excellent performance against glioma in an incomplete glioma operation model, which indicated that the T/PPS + TMZ hydrogel effectively inhibited the growth of recurrent glioma. Conclusion In summary, we successfully developed injectable MMPs- and ROS-responsive hydrogels that could achieve the sustained release of TMZ in the surgical cavity to inhibit local recurrent glioma after surgery. Graphic abstract


Genetics ◽  
1979 ◽  
Vol 91 (2) ◽  
pp. 215-227
Author(s):  
W Scott Champney

ABSTRACT Two variations of the method of localized mutagenesis were used to introduce mutations into the 72 min region of the Escherichia coli chromosome. Twenty temperature-sensitive mutants, with linkage to markers in this region, have been examined. Each strain showed an inhibition of growth in liquid medium at 44°, and 19 of the mutants lost viability upon prolonged incubation at this temperature. A reduction in the rate of in vivo RNA and protein synthesis was observed for each mutant at 44°, relative to a control strain. Eleven of the mutants were altered in growth sensitivity or resistance to one or more of three ribosomal antibiotics. The incomplete assembly of ribosomal subunits was detected in nine strains grown at 44°. The characteristics of these mutants suggest that many of them are altered in genes for translational or transcriptional components, consistent with the clustering of these genes at this chromosomal locus.


Genetics ◽  
1998 ◽  
Vol 150 (4) ◽  
pp. 1407-1417 ◽  
Author(s):  
Simon J Dowell ◽  
Anne L Bishop ◽  
Susan L Dyos ◽  
Andrew J Brown ◽  
Malcolm S Whiteway

Abstract The mating pathway of Saccharomyces cerevisiae is widely used as a model system for G protein-coupled receptor-mediated signal transduction. Following receptor activation by the binding of mating pheromones, G protein βγ subunits transmit the signal to a MAP kinase cascade, which involves interaction of Gβ (Ste4p) with the MAP kinase scaffold protein Ste5p. Here, we identify residues in Ste4p required for the interaction with Ste5p. These residues define a new signaling interface close to the Ste20p binding site within the Gβγ coiled-coil. Ste4p mutants defective in the Ste5p interaction interact efficiently with Gpa1p (Gα) and Ste18p (Gγ) but cannot function in signal transduction because cells expressing these mutants are sterile. Ste4 L65S is temperature-sensitive for its interaction with Ste5p, and also for signaling. We have identified a Ste5p mutant (L196A) that displays a synthetic interaction defect with Ste4 L65S, providing strong evidence that Ste4p and Ste5p interact directly in vivo through an interface that involves hydrophobic residues. The correlation between disruption of the Ste4p-Ste5p interaction and sterility confirms the importance of this interaction in signal transduction. Identification of the Gβγ coiled-coil in Ste5p binding may set a precedent for Gβγ-effector interactions in more complex organisms.


2001 ◽  
Vol 357 (2) ◽  
pp. 417-426 ◽  
Author(s):  
Shigehiko TAMURA ◽  
Naomi MATSUMOTO ◽  
Atsushi IMAMURA ◽  
Nobuyuki SHIMOZAWA ◽  
Yasuyuki SUZUKI ◽  
...  

The peroxisome biogenesis disorders (PBDs), including Zellweger syndrome (ZS), neonatal adrenoleucodystrophy (NALD) and infantile Refsum disease (IRD), are fatal autosomal recessive diseases caused by impaired peroxisome biogenesis, of which 12 genotypes have been reported. ZS patients manifest the severest clinical and biochemical abnormalities, whereas those with NALD and IRD show less severity and the mildest features respectively. We have reported previously that temperature-sensitive peroxisome assembly is responsible for the mildness of the clinical features of IRD. PEX1 is the causative gene for PBDs of complementation group E (CG-E, CG1 in the U.S.A. and Europe), the PBDs of highest incidence, encoding the peroxin Pex1p of the AAA ATPase family. It has been also reported that Pex1p and Pex6p interact with each other. In the present study we investigated phenotype–genotype relationships of CG1 PBDs. Pex1p from IRD such as Pex1p with the most frequently identified mutation at G843D was largely degraded in vivo at 37°C, whereas a normal level of Pex1p was detectable at the permissive temperature. In contrast, PEX1 proteins derived from ZS patients, including proteins with a mutation at L664P or the deletion of residues 634–690, were stably present at both temperatures. Pex1p-G843D interacted with Pex6p at approx. 50% of the level of normal Pex1p, whereas Pex1p from ZS patients mostly showing non-temperature-sensitive peroxisome biogenesis hardly bound to Pex6p. Taking these results together, we consider it most likely that the stability of Pex1p reflects temperature-sensitive peroxisome assembly in IRD fibroblasts. Failure in Pex1p–Pex6p interaction gives rise to more severe abnormalities, such as those manifested by patients with ZS.


Sign in / Sign up

Export Citation Format

Share Document