scholarly journals Immune Cell Infiltration in the Microenvironment of Liver Oligometastasis from Colorectal Cancer: Intratumoural CD8/CD3 Ratio Is a Valuable Prognostic Index for Patients Undergoing Liver Metastasectomy

Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1922 ◽  
Author(s):  
Jianhong Peng ◽  
Yongchun Wang ◽  
Rongxin Zhang ◽  
Yuxiang Deng ◽  
Binyi Xiao ◽  
...  

Background: A comprehensive investigation into immune cell infiltration provides more accurate and reliable prognostic information for patients with colorectal liver oligometastases (CLO) after liver metastasectomy. Methods: Simultaneous detection of the immune constituents CD3+, CD8+, Foxp3+ T, and α-SMA+ cells in the liver oligometastasis of 133 patients was conducted using a four-colour immunohistochemical multiplex technique. Immune cells were quantified, and tumour-infiltrating lymphocyte (TIL) ratios were subsequently calculated. Correlation analysis was performed using Pearson’s correlation. Recurrence-free survival (RFS) and overall survival (OS) for TIL ratios were analysed using the Kaplan–Meier method and Cox regression models. Results: Significantly fewer CD3+, CD8+, and Foxp3+ T cells were observed in the intratumoural region than in the peritumoural region of liver metastases. CD3+, CD8+, Foxp3+ T, and α-SMA+ cells showed significantly positive correlations with each other both in the intratumoural and peritumoural regions of liver metastases. Only the CD8/CD3 TIL ratio demonstrated a positive correlation between intratumoural and peritumoural regions of liver metastases (r = 0.541, p < 0.001). Patients with high intratumoural CD8/CD3 ratios had significantly longer 3-year RFS (59.0% vs. 47.4%, p = 0.035) and 3-year OS rates (83.3% vs. 65.8%, p = 0.007) than those with low intratumoural CD8/CD3 ratios. Multivariate analyses revealed that the intratumoural CD8/CD3 ratio was independently associated with RFS (HR = 0.593; 95% CI = 0.357–0.985; p = 0.043) and OS (HR = 0.391; 95% CI = 0.193–0.794; p = 0.009). Conclusion: These findings offer a better understanding of the prognostic value of immune cell infiltration on liver oligometastasis from colorectal cancer.

2020 ◽  
Vol 27 (1) ◽  
pp. 107327482090338
Author(s):  
Fabian Haak ◽  
Isabelle Obrecht ◽  
Nadia Tosti ◽  
Benjamin Weixler ◽  
Robert Mechera ◽  
...  

Objectives: Analysis of tumor immune infiltration has been suggested to outperform tumor, node, metastasis staging in predicting clinical course of colorectal cancer (CRC). Infiltration by cells expressing OX40, a member of the tumor necrosis factor receptor family, or CD16, expressed by natural killer cells, monocytes, and dendritic cells, has been associated with favorable prognosis in patients with CRC. We hypothesized that assessment of CRC infiltration by both OX40+ and CD16+ cells might result in enhanced prognostic significance. Methods: Colorectal cancer infiltration by OX40 and CD16 expressing cells was investigated in 441 primary CRCs using tissue microarrays and specific antibodies, by immunohistochemistry. Patients’ survival was evaluated by Kaplan-Meier and log-rank tests. Multivariate Cox regression analysis, hazard ratios, and 95% confidence intervals were also used to evaluate prognostic significance of OX40+ and CD16+ cell infiltration. Results: Colorectal cancer infiltration by OX40+ and CD16+ cells was subclassified into 4 groups with high or low infiltration levels in all possible combinations. High levels of infiltration by both OX40+ and CD16+ cells were associated with lower pT stage, absence of peritumoral lymphocytic (PTL) inflammation, and a positive prognostic impact. Patients bearing tumors with high infiltration by CD16+ and OX40+ cells were also characterized by significantly longer overall survival, as compared with the other groups. These results were confirmed by analyzing an independent validation cohort. Conclusions: Combined infiltration by OX40+ and CD16+ immune cells is an independent favorable prognostic marker in CRC. The prognostic value of CD16+ immune cell infiltration is significantly improved by the combined analysis with OX40+ cell infiltration.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shaokun Wang ◽  
Li Pang ◽  
Zuolong Liu ◽  
Xiangwei Meng

Abstract Background The change of immune cell infiltration essentially influences the process of colorectal cancer development. The infiltration of immune cells can be regulated by a variety of genes. Thus, modeling the immune microenvironment of colorectal cancer by analyzing the genes involved can be more conducive to the in-depth understanding of carcinogenesis and the progression thereof. Methods In this study, the number of stromal and immune cells in malignant tumor tissues were first estimated by using expression data (ESTIMATE) and cell-type identification with relative subsets of known RNA transcripts (CIBERSORT) to calculate the proportion of infiltrating immune cell and stromal components of colon cancer samples from the Cancer Genome Atlas database. Then the relationship between the TMN Classification and prognosis of malignant tumors was evaluated. Results By investigating differentially expressed genes using COX regression and protein-protein interaction network (PPI), the candidate hub gene serine protease inhibitor family E member 1 (SERPINE1) was found to be associated with immune cell infiltration. Gene Set Enrichment Analysis (GSEA) further projected the potential pathways with elevated SERPINE1 expression to carcinogenesis and immunity. CIBERSORT was subsequently utilized to investigate the relationship between the expression differences of SERPINE1 and immune cell infiltration and to identify eight immune cells associated with SERPINE1 expression. Conclusion We found that SERPINE1 plays a role in the remodeling of the colon cancer microenvironment and the infiltration of immune cells.


Bioengineered ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 3410-3425
Author(s):  
Xiangzhou Tan ◽  
Linfeng Mao ◽  
Changhao Huang ◽  
Weimin Yang ◽  
Jianping Guo ◽  
...  

2022 ◽  
Author(s):  
Yang Bu ◽  
Kejun Liu ◽  
Yiming Niu ◽  
Ji Hao ◽  
Lei Cui ◽  
...  

Abstract Background: Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in the metabolic and immunological aspects of tumors. In hepatocellular carcinoma (HCC), the alteration of tumor microenvironment influences recurrence and metastasis. We extracted G6PD-related data from public databases of HCC tissues and used a bioinformatics approach to explore the correlation between G6PD expression and clinicopathological features and prognosis of immune cell infiltration in HCC.Methods: We extract G6PD expression information from TCGA and GEO databases in liver cancer tissues and normal tissues, validated by immunohistochemistry, and the correlation between G6PD expression and clinical features is analyzed, and the clinical significance of G6PD in liver cancer is assessed by Kaplan-Meier, Cox regression and prognostic line graph models. Functional enrichment analysis is performed by protein-protein interaction (PPI) network, GO/KEGG, GSEA and G6PD-associated differentially expressed genes (DEGs). TIMER and ssGSEA packages are used to assess the correlation between expression and the level of immune cell infiltration.Results: Our results show that G6PD expression is significantly upregulated in hepatocellular carcinoma tissues (P < 0.001). G6PD expression is associated with histological grade, pathological stage, T-stage, vascular infiltration and AFP level (P < 0.05); HCC patients in the low G6PD expression group had longer overall survival and better prognosis compared with the high G6PD expression group (P < 0.05). The level of G6PD expression also affects the levels of macrophages, unactivated dendritic cells, B cells, and follicular helper T cells in the tumor microenvironment.Conclusion: High expression of G6PD is a potential biomarker for poor prognosis of hepatocellular carcinoma, and G6PD may be a target for immunotherapy of HCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhuomao Mo ◽  
Daiyuan Liu ◽  
Dade Rong ◽  
Shijun Zhang

Background: Generally, hepatocellular carcinoma (HCC) exists in an immunosuppressive microenvironment that promotes tumor evasion. Hypoxia can impact intercellular crosstalk in the tumor microenvironment. This study aimed to explore and elucidate the underlying relationship between hypoxia and immunotherapy in patients with HCC.Methods: HCC genomic and clinicopathological datasets were obtained from The Cancer Genome Atlas (TCGA-LIHC), Gene Expression Omnibus databases (GSE14520) and International Cancer Genome Consortium (ICGC-LIRI). The TCGA-LIHC cases were divided into clusters based on single sample gene set enrichment analysis and hierarchical clustering. After identifying patients with immunosuppressive microenvironment with different hypoxic conditions, correlations between immunological characteristics and hypoxia clusters were investigated. Subsequently, a hypoxia-associated score was established by differential expression, univariable Cox regression, and lasso regression analyses. The score was verified by survival and receiver operating characteristic curve analyses. The GSE14520 cohort was used to validate the findings of immune cell infiltration and immune checkpoints expression, while the ICGC-LIRI cohort was employed to verify the hypoxia-associated score.Results: We identified hypoxic patients with immunosuppressive HCC. This cluster exhibited higher immune cell infiltration and immune checkpoint expression in the TCGA cohort, while similar significant differences were observed in the GEO cohort. The hypoxia-associated score was composed of five genes (ephrin A3, dihydropyrimidinase like 4, solute carrier family 2 member 5, stanniocalcin 2, and lysyl oxidase). In both two cohorts, survival analysis revealed significant differences between the high-risk and low-risk groups. In addition, compared to other clinical parameters, the established score had the highest predictive performance at both 3 and 5 years in two cohorts.Conclusion: This study provides further evidence of the link between hypoxic signals in patients and immunosuppression in HCC. Defining hypoxia-associated HCC subtypes may help reveal potential regulatory mechanisms between hypoxia and the immunosuppressive microenvironment, and our hypoxia-associated score could exhibit potential implications for future predictive models.


2021 ◽  
Vol 14 (8) ◽  
pp. 1151-1159
Author(s):  
Chen-Lu Liao ◽  
◽  
Xing-Yu Sun ◽  
Qi Zhou ◽  
Min Tian ◽  
...  

AIM: To investigate the role of tumor microenvironment (TME)-related long non-coding RNA (lncRNA) in uveal melanoma (UM), probable prognostic signature and potential small molecule drugs using bioinformatics analysis. METHODS: UM expression profile data were downloaded from the Cancer Genome Atlas (TCGA) and bioinformatics methods were used to find prognostic lncRNAs related to UM immune cell infiltration. The gene expression profile data of 80 TCGA specimens were analyzed using the single sample Gene Set Enrichment Analysis (ssGSEA) method, and the immune cell infiltration of a single specimen was evaluated. Finally, the specimens were divided into high and low infiltration groups. The differential expression between the two groups was analyzed using the R package ‘edgeR’. Univariate, multivariate and Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analyses were performed to explore the prognostic value of TME-related lncRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analyses were also performed. The Connectivity Map (CMap) data set was used to screen molecular drugs that may treat UM. RESULTS: A total of 2393 differentially expressed genes were identified and met the criteria for the low and high immune cell infiltration groups. Univariate Cox analysis of lncRNA genes with differential expression identified 186 genes associated with prognosis. Eight prognostic markers of TME-included lncRNA genes were established as potentially independent prognostic elements. Among 269 differentially expressed lncRNAs, 69 were up-regulated and 200 were down-regulated. Univariate Cox regression analysis of the risk indicators and clinical characteristics of the 8 lncRNA gene constructs showed that age, TNM stage, tumor base diameter, and low and high risk indices had significant prognostic value. We screened the potential small-molecule drugs for UM, including W-13, AH-6809 and Imatinib. CONCLUSION: The prognostic markers identified in this study are reliable biomarkers of UM. This study expands our current understanding of the role of TME-related lncRNAs in UM genesis, which may lay the foundations for future treatment of this disease.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mingqin Ge ◽  
Jie Niu ◽  
Ping Hu ◽  
Aihua Tong ◽  
Yan Dai ◽  
...  

Objective: This study aimed to construct a prognostic ferroptosis-related signature for thyroid cancer and probe into the association with tumor immune microenvironment.Methods: Based on the expression profiles of ferroptosis-related genes, a LASSO cox regression model was established for thyroid cancer. Kaplan-Meier survival analysis was presented between high and low risk groups. The predictive performance was assessed by ROC. The predictive independency was validated via multivariate cox regression analysis and stratified analysis. A nomogram was established and verified by calibration curves. The enriched signaling pathways were predicted via GSEA. The association between the signature and immune cell infiltration was analyzed by CIBERSORT. The ferroptosis-related genes were validated in thyroid cancer tissues by immunohistochemistry and RT-qPCR.Results: A ferroptosis-related eight gene model was established for predicting the prognosis of thyroid cancer. Patients with high risk score indicated a poorer prognosis than those with low risk score (p = 1.186e-03). The AUCs for 1-, 2-, and 3-year survival were 0.887, 0.890, and 0.840, respectively. Following adjusting other prognostic factors, the model could independently predict the prognosis (p = 0.015, HR: 1.870, 95%CI: 1.132–3.090). A nomogram combining the signature and age was constructed. The nomogram-predicted probability of 1-, 3-, and 5-year survival approached the actual survival time. Several ferroptosis-related pathways were enriched in the high-risk group. The signature was distinctly associated with the immune cell infiltration. After validation, the eight genes were abnormally expressed between thyroid cancer and control tissues.Conclusion: Our findings established a prognostic ferroptosis-related signature that was associated with the immune microenvironment for thyroid cancer.


2020 ◽  
Author(s):  
Lianxiang Luo ◽  
Yushi Zheng ◽  
Zhiping Lin ◽  
Xiaodi Li ◽  
Xiaoling Li ◽  
...  

Abstract Background: The role of Serine hydroxymethyltransferase2 (SHMT2) in diverse cancers has attracted increasing attention. However, the prognostic role of SHMT2 in lung adenocarcinoma (LUAD) and its relationship with immune cell infiltration is yet to be studied.Methods: The data of mRNA and clinic in LUAD were respectively downloaded from the GEO and TCGA database. We conducted a biological analysis to select the signature gene SHMT2. Online databases including Oncomine, GEPIA, TISIDB, TIMER, and HPA were applied to analyze the characterization of SHMT2 expression, prognosis and the correlation with immune infiltrates in LUAD.Results: The mRNA expression and protein expression of SHMT2 in LUAD were higher than normal tissue. A Kaplan-Meier analysis showed the lower expression level of SHMT2 had a better overall survival rate. Multivariate analysis and the Cox proportional hazard regression model revealed that SHMT2 expression was an independent prognostic factor for patients with LUAD. Meanwhile, the gene SHMT2 was highly associated with tumor-infiltrating lymphocytes in LUAD.Conclusions: These results suggest that the SHMT2 gene is a promising candidate as a potential prognostic biomarker and highly associated with different types of phenotypes of immune cell infiltration in LUAD.


Sign in / Sign up

Export Citation Format

Share Document