scholarly journals Tumor Suppressor Function of miR-127-3p and miR-376a-3p in Osteosarcoma Cells

Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2019 ◽  
Author(s):  
Joerg Fellenberg ◽  
Burkhard Lehner ◽  
Heiner Saehr ◽  
Astrid Schenker ◽  
Pierre Kunz

Since the introduction of high-dose chemotherapy about 35 years ago, survival rates of osteosarcoma patients have not been significantly improved. New therapeutic strategies replacing or complementing conventional chemotherapy are therefore urgently required. MicroRNAs represent promising targets for such new therapies, as they are involved in the pathology of multiple types of cancer, and aberrant expression of several miRNAs has already been shown in osteosarcoma. In this study, we identified silencing of miR-127-3p and miR-376a-3p in osteosarcoma cell lines and tissues and investigated their role as potential tumor suppressors in vitro and in vivo. Transfection of osteosarcoma cells (n = 6) with miR-127-3p and miR-376a-3p mimics significantly inhibited proliferation and reduced the colony formation capacity of these cells. In contrast, we could not detect any influence of miRNA restoration on cell cycle and apoptosis induction. The effects of candidate miRNA restoration on tumor engraftment and growth in vivo were analyzed using a chicken chorioallantoic membrane (CAM) assay. Cells transfected with mir-127-3p and miR-376a-3p showed reduced tumor take rates and tumor volumes and a significant decrease of the cumulative tumor volumes to 41% and 54% compared to wildtype cells. The observed tumor suppressor function of both analyzed miRNAs indicates these miRNAs as potentially valuable targets for the development of new therapeutic strategies for the treatment of osteosarcoma.

PLoS ONE ◽  
2009 ◽  
Vol 4 (10) ◽  
pp. e7445 ◽  
Author(s):  
You Me Sung ◽  
Xuehua Xu ◽  
Junfeng Sun ◽  
Duane Mueller ◽  
Kinza Sentissi ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
pp. 871-883
Author(s):  
Jinshan Zhang ◽  
Dan Rao ◽  
Haibo Ma ◽  
Defeng Kong ◽  
Xiaoming Xu ◽  
...  

AbstractBackgroundOsteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed.MethodsCell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo.ResultsAutophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo.ConclusionsSNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.


2020 ◽  
Author(s):  
Jianmin Liu ◽  
Ming Chen ◽  
Longyang Ma ◽  
Xingbo Dang ◽  
Gongliang Du

Abstract Background: Accumulating evidence has shown that lncRNA growth arrest special 5 (GAS5) is a well‑known tumor suppressor in the pathogenesis of a variety of human cancers. However, the detailed role of GAS5 in osteosarcoma is largely unclear. Here, we explore the role of GAS5 in progression of osteosarcoma. Methods: The expression level of GAS5 was detected in human osteosarcoma tissues and matched adjacent tissues, as well as osteosarcoma cell lines and non-malignant osteoblast cells. Then, in vitro gain- and loss-of-function experiments, with the pcDNA-GAS5 expression vector and GAS5-siRNA, were performed in U2OS and HOS cells to determine the effect of GAS5 on osteosarcoma cell proliferation and invasion. Subsequently, we searched potential miRNA targets with bioinformatics analysis and confirmed their interaction by using luciferase reporter gene and RNA pull-down assays. The function and mechanism of miR-23a-3p in proliferation and invasion was also investigated in U2OS and HOS cells. Furthermore, rescue experiments were performed to verify the involvement of miR-23a-3p and its target gene in GAS5-mediated cell behaviors. Finally, a xenograft nude mouse model was established by subcutaneous injection with U2OS cells overexpressing GAS5 or not, and the effect of GAS5 on tumor growth in vivo was evaluated. Results: GAS5 was downregulated in human osteosarcoma tissues and cell lines. Overexpression of GAS5 could significantly suppress, and downregulation of GAS5 promoted, proliferation and invasion of osteosarcoma cells. GAS5 could directly bind with and downregulated miR-23a-3p that post-transcriptionally downregulated the tumor suppressor PTEN and positively regulated proliferation and invasion of osteosarcoma cells. Rescue experiments confirmed the involvement of miR-23a-3p and PTEN in GAS5-mediated cell behaviors by modifying the phosphatidylinositol-3-kinases/protein-serine-threonine kinase (PI3K/AKT) pathway. GAS5 could inhibit tumor growth in vivo . Conclusion: GAS5 functions as a competing endogenous RNA , sponging miR-23a-3p, to promote PTEN expression and suppress cell growth and invasion in osteosarcoma by regulating the PI3K/AKT pathway.


2015 ◽  
Vol 26 (8) ◽  
pp. 1416-1427 ◽  
Author(s):  
Wei Cui ◽  
Zhijun Huang ◽  
Hongjuan He ◽  
Ning Gu ◽  
Geng Qin ◽  
...  

The aberrant expression of microRNAs (miRNAs) has frequently been reported in cancer studies; miRNAs play roles in development, progression, metastasis, and prognosis. Recent studies indicate that the miRNAs within the Dlk1-Dio3 genomic region are involved in the development of liver cancer, but the role of miR-1188 in hepatocellular carcinoma (HCC) and the pathway by which it exerts its function remain largely unknown. Here we demonstrate that miR-1188 is significantly down-regulated in mouse hepatoma cells compared with normal liver tissues. Enhanced miR-1188 suppresses cell proliferation, migration, and invasion in vitro and inhibits the tumor growth of HCC cells in vivo. Moreover, overexpressed miR-1188 promotes apoptosis, enhances caspase-3 activity, and also up-regulates the expression of Bax and p53. MiR-1188 directly targets and negatively regulates Bcl-2 and Sp1. Silencing of Bcl-2 and Sp1 exactly copies the proapoptotic and anti-invasive effects of miR-1188, respectively. The expression of apoptosis- and invasion-related genes, such as Vegfa, Fgfr1, and Rprd1b, decreases after enhancement of miR-1188, as determined by gene expression profiling analysis. Taken together, our results highlight an important role for miR-1188 as a tumor suppressor in hepatoma cells and imply its potential role in cancer therapy.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 871-871
Author(s):  
Colles Price ◽  
Ping Chen ◽  
Shenglai Li ◽  
Zejuan Li ◽  
Yuanyuan Li ◽  
...  

Abstract MicroRNAs (miRNAs), are small non-coding RNA molecules known to be important regulators of cancer biology. Notably, we and others have shown that miRNAs play important roles in Acute Myeloid Leukemia (AML), a heterogeneous malignancies with multiple chromosomal and molecular abnormalities. Patients with chromosomal rearrangements involving mixed lineage leukemia (MLL), the mammalian homology of trithorax gene, are associated with poor survival. Previously, we have found that MLL-rearranged AML drives aberrant expression of several miRNAs, most notably microRNA-9 (miR-9). Expression of miR-9 with MLL-AF9, a common MLL-translocation, was sufficient to promote transformation normal hematopoietic progenitor cells in vitro and leukemogenesis in vivo. We previously found that miR-9 reduces expression of several genes but we did not know which genes were critical tumor suppressors. We found that the polycomb group member RING1- and YY1-Bindin Protein (RYBP) was consistently inhibited upon miR-9 expression. To assess the regulation of RYBP we used publically available data from the Cancer Genome Atlas (TCGA) and looked at genome-wide Illumina 450K methylation data. We did not find a strong correlation with methylation and RYBP expression, suggesting that expression of RYBP is likely not regulated by the DNA methylation machinery in patients. Upon looking at copy number alterations we found that a small population of AML patients contained either homozygous or heterozygous loss of RYBP, suggesting a potential role of RYBP in leukemia pathogenesis. To assess the role of RYBP we did a series of in vitro experiments. We found that expression of RYBP was sufficient to attenuate colony-forming growth driven by MLL- AF9. Furthermore, RYBP expression was able to reduce proliferation, increase apoptosis, and significantly reduce immature cell population. To determine the role of RYBP expression in vivo, we transplanted lethally irradiated mice with progenitors retrovirally transduced with MLL-AF9 compared to MLL-AF9 and RYBP. We found that expression of RYBP was sufficient to reduce leukemia burden in vivo as well as induce differentiation as shown by flow cytometry and histological analysis. Thus, this demonstrates that RYBP is a functional tumor suppressor in MLL-rearranged AML. In conclusion, we have demonstrated that chromosomal rearrangements involving MLL, the mammalian homology of trithorax, downregulates a member of the polycomb complex through upregulation of miR-9. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Feng Jiang ◽  
Yan Shi ◽  
Hong Lu ◽  
Guojun Li

Armadillo repeat-containing protein 8 (ARMC8) plays an important role in regulating cell migration, proliferation, tissue maintenance, signal transduction, and tumorigenesis. However, the expression pattern and role of ARMC8 in osteosarcoma are still unclear. In this study, our aims were to examine the effects of ARMC8 on osteosarcoma and to explore its underlying mechanism. Our results demonstrated that ARMC8 was overexpressed in osteosarcoma cell lines. Knockdown of ARMC8 significantly inhibited osteosarcoma cell proliferation in vitro and markedly inhibited xenograft tumor growth in vivo. ARMC8 silencing also suppressed the epithelial‐mesenchymal transition (EMT) phenotype, as well as inhibited the migration and invasion of osteosarcoma cells. Furthermore, knockdown of ARMC8 obviously inhibited the expression of β-catenin, c-Myc, and cyclin D1 in MG-63 cells. In conclusion, this report demonstrates that ARMC8 silencing inhibits proliferation and invasion of osteosarcoma cells. Therefore, ARMC8 may play an important role in the development and progression of human osteosarcoma and may represent a novel therapeutic target in the treatment of osteosarcoma.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Shiwei Liu ◽  
Jingchao Li ◽  
Liang Kang ◽  
Yueyang Tian ◽  
Yuan Xue

Abstract Background Over the years, long non-coding RNAs (lncRNAs) have been clarified in malignancies, this research was focused on the role of lncRNA cartilage injury-related (lncRNA-CIR) in osteosarcoma cells. Methods LncRNA-CIR expression in osteosarcoma tissues and cells, and adjacent normal tissues and normal osteoblasts was determined, then the relations between lncRNA-CIR expression and the clinicopathological features, and between lncRNA-CIR expression and the prognosis of osteosarcoma patients were analyzed. Moreover, the MG63 and 143B cells were treated with silenced or overexpressed lncRNA-CIR, and then the proliferation, invasion, migration and apoptosis of the cells were evaluated by gain- and loss-of-function approaches. The tumor growth, and proliferation and apoptosis of osteosarcoma cells in vivo were observed by subcutaneous tumorigenesis in nude mice. Results We have found that lncRNA-CIR was up-regulated in osteosarcoma tissues and cells, which was respectively relative to adjacent normal tissues and normal osteoblasts. The expression of lncRNA-CIR was evidently correlated with disease stages, distant metastasis and differentiation of osteosarcoma patients, and the high expression of lncRNA-CIR indicated a poor prognosis. Furthermore, the reduction of lncRNA-CIR could restrict proliferation, invasion and migration, but promote apoptosis of osteosarcoma cells in vitro. Meanwhile, inhibited lncRNA-CIR also restrained tumor growth and osteosarcoma cell proliferation, whereas accelerated apoptosis of osteosarcoma cells in vivo. Conclusion We have found in this study that the inhibited lncRNA-CIR could decelerate proliferation, invasion and migration, but accelerate apoptosis of osteosarcoma cells, which may provide a novel target for osteosarcoma treatment.


Oncogene ◽  
2001 ◽  
Vol 20 (23) ◽  
pp. 2946-2955 ◽  
Author(s):  
Joanna M Prasher ◽  
Kojo S J Elenitoba-Johnson ◽  
Linda L Kelley

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii409-iii409
Author(s):  
Dong Wang ◽  
Angela Pierce ◽  
Bethany Veo ◽  
Susan Fosmire ◽  
Krishna Madhavan ◽  
...  

Abstract Group 3 medulloblastoma (MB) is often accompanied by MYC amplification and has a higher rate of metastatic disease. So, it is critical to have more effective therapies for high MYC expressing sub-groups. Here we report that FBXW7, a substrate recognition component of the SKP1-CUL1-Fbox (SCF) E3 ligase, interacts with and targets c-MYC for polyubiquitination and proteasomal degradation. FBXW7 shows lower expression level in MYC-driven MB compared with other MB subgroups suggesting activity as a tumor suppressor. Genomic deletion or mutation of Fbxw7 has frequently been identified in many human cancers but not in MB. We demonstrate that overexpression of Fbxw7 in MB cells induces apoptosis and suppresses proliferation in vitro and in vivo. Both phospho-deficient (T205A) and phosphomimetic aspartic acid (T205D) mutants deactivate its tumor suppressor function suggesting a conformational change of its protein structure. Mechanistically, PLK1 kinase specifically phosphorylates FBXW7 and promotes its auto-polyubiquitination and proteasomal degradation, counteracting FBXW7-mediated degradation of oncogene substrates, including c-MYC and PLK1. Chip-Seq results show stabilized c-MYC in turn directly activates PLK1 and FBXW7 transcription, constituting a feedforward regulatory loop. Co-immunoprecipitation demonstrates that FBXW7 directly binds to PLK1 and c-MYC, facilitating their protein degradation by promoting the ubiquitination of both proteins. Furthermore, we show that FBXW7 protein can be stabilized by various kinase inhibitors, proposing a mechanism of kinase-targeted agents to treat MYC-driven MB. These results collectively demonstrate how kinase inhibition stabilizes the tumor suppressor FBXW7 in MYC-driven MB, thus revealing an important function of FBXW7 in suppressing MB progression.


Sign in / Sign up

Export Citation Format

Share Document