scholarly journals Acquired Resistance to Immune Checkpoint Blockade Therapies

Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1161
Author(s):  
Xianda Zhao ◽  
Dechen Wangmo ◽  
Matthew Robertson ◽  
Subbaya Subramanian

Immune checkpoint blockade therapy (ICBT) has revolutionized the treatment and management of numerous cancers, yet a substantial proportion of patients who initially respond to ICBT subsequently develop resistance. Comprehensive genomic analysis of samples from recent clinical trials and pre-clinical investigation in mouse models of cancer provide insight into how tumors evade ICBT after an initial response to treatment. Here, we summarize our current knowledge on the development of acquired ICBT resistance, by examining the mechanisms related to tumor-intrinsic properties, T-cell function, and tumor-immune cell interactions. We discuss current and future management of ICBT resistance, and consider crucial questions remaining in this field of acquired resistance to immune checkpoint blockade therapies.

Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 179
Author(s):  
Elizabeth R. Stirling ◽  
Steven M. Bronson ◽  
Jessica D. Mackert ◽  
Katherine L. Cook ◽  
Pierre L. Triozzi ◽  
...  

Expression of immune checkpoint proteins restrict immunosurveillance in the tumor microenvironment; thus, FDA-approved checkpoint inhibitor drugs, specifically PD-1/PD-L1 and CTLA-4 inhibitors, promote a cytotoxic antitumor immune response. Aside from inflammatory signaling, immune checkpoint proteins invoke metabolic reprogramming that affects immune cell function, autonomous cancer cell bioenergetics, and patient response. Therefore, this review will focus on the metabolic alterations in immune and cancer cells regulated by currently approved immune checkpoint target proteins and the effect of costimulatory receptor signaling on immunometabolism. Additionally, we explore how diet and the microbiome impact immune checkpoint blockade therapy response. The metabolic reprogramming caused by targeting these proteins is essential in understanding immune-related adverse events and therapeutic resistance. This can provide valuable information for potential biomarkers or combination therapy strategies targeting metabolic pathways with immune checkpoint blockade to enhance patient response.


Author(s):  
Jaclyn Sceneay ◽  
Charles Sinclair

Immune-checkpoint blockade (ICB) has transformed the landscape of cancer treatment. However, there is much to understand around refractory or acquired resistance in patients in order to utilize ICB therapy to its full potential. In this perspective article, we discuss the opportunities and challenges that are emerging as our understanding of immuno-oncology resistance matures. Firstly, there has been remarkable progress made to understand the exquisite overlap between oncogenic and immune signaling pathways. Several cancer-signaling pathways are constitutively active in oncogenic settings and also play physiological roles in immune cell function. A growing number of precision oncology tumor-targeted drugs show remarkable immunogenic properties that might be harnessed with rational combination strategies. Secondly, we now understand that the immune system confers a strong selective pressure on tumors. Whilst this pressure can lead to novel tumor evolution and immune escape, there is a growing recognition of tumor-intrinsic dependencies that arise in immune pressured environments. Such dependencies provide a roadmap for novel tumor-intrinsic drug targets to alleviate ICB resistance. We anticipate that rational combinations with existing oncology drugs and a next wave of tumor-intrinsic drugs that specifically target immunological resistance will represent the next frontier of therapeutic opportunity.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3359
Author(s):  
Elias Koch ◽  
Anne Petzold ◽  
Anja Wessely ◽  
Edgar Dippel ◽  
Anja Gesierich ◽  
...  

Background: Since there is no standardized and effective treatment for advanced uveal melanoma (UM), the prognosis is dismal once metastases develop. Due to the availability of immune checkpoint blockade (ICB) in the real-world setting, the prognosis of metastatic UM has improved. However, it is unclear how the presence of hepatic and extrahepatic metastasis impacts the response and survival after ICB. Methods: A total of 178 patients with metastatic UM treated with ICB were included in this analysis. Patients were recruited from German skin cancer centers and the German national skin cancer registry (ADOReg). To investigate the impact of hepatic metastasis, two cohorts were compared: patients with liver metastasis only (cohort A, n = 55) versus those with both liver and extra-hepatic metastasis (cohort B, n = 123). Data were analyzed in both cohorts for response to treatment, progression-free survival (PFS), and overall survival (OS). The survival and progression probabilities were calculated with the Kaplan–Meier method. Log-rank tests, χ2 tests, and t-tests were performed to detect significant differences between both cohorts. Results: The median OS of the overall population was 16 months (95% CI 13.4–23.7) and the median PFS, 2.8 months (95% CI 2.5–3.0). The median OS was longer in cohort B than in cohort A (18.2 vs. 6.1 months; p = 0.071). The best objective response rate to dual ICB was 13.8% and to anti-PD-1 monotherapy 8.9% in the entire population. Patients with liver metastases only had a lower response to dual ICB, yet without significance (cohort A 8.7% vs. cohort B 16.7%; p = 0.45). Adverse events (AE) occurred in 41.6%. Severe AE were observed in 26.3% and evenly distributed between both cohorts. Conclusion: The survival of this large cohort of patients with advanced UM was more favorable than reported in previous benchmark studies. Patients with both hepatic and extrahepatic metastasis showed more favorable survival and higher response to dual ICB than those with hepatic metastasis only.


2020 ◽  
Vol 1 (8) ◽  
pp. 100139
Author(s):  
Valsamo Anagnostou ◽  
Daniel C. Bruhm ◽  
Noushin Niknafs ◽  
James R. White ◽  
Xiaoshan M. Shao ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 331-351
Author(s):  
Shridar Ganesan ◽  
Janice Mehnert

Immune checkpoint blockade (ICB) has significant clinical activity in diverse cancer classes and can induce durable remissions in even refractory advanced disease. However, only a minority of cancer patients treated with ICB have long-term benefits, and ICB treatment is associated with significant, potentially life-threatening, autoimmune side effects. There is a great need to develop biomarkers of response to guide patient selection to maximize the chance of benefit and prevent unnecessary toxicity, and current biomarkers do not have optimal positive or negative predictive value. A variety of potential biomarkers are currently being developed, including those based on assessment of checkpoint protein expression, evaluation of tumor-intrinsic features including mutation burden and viral infection, evaluation of features of the tumor immune microenvironment including nature of immune cell infiltration, and features of the host such as composition of the gut microbiome. Better understanding of the underlying fundamental mechanisms of immune response and resistance to ICB, along with the use of complementary assays that interrogate distinct features of the tumor, the tumor microenvironment, and host immune system, will allow more precise use of these therapies to optimize patient outcomes.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A5.1-A5
Author(s):  
A Martinez-Usatorre ◽  
E Kadioglu ◽  
C Cianciaruso ◽  
B Torchia ◽  
J Faget ◽  
...  

BackgroundImmune checkpoint blockade (ICB) with antibodies against PD-1 or PD-L1 may provide therapeutic benefits in patients with non-small cell lung cancer (NSCLC). However, most tumours are resistant and cases of disease hyper-progression have also been reported.Materials and MethodsGenetically engineered mouse models of KrasG12Dp53null NSCLC were treated with cisplatin along with antibodies against angiopoietin-2/VEGFA, PD-1 and CSF1R. Tumour growth was monitored by micro-computed tomography and the tumour vasculature and immune cell infiltrates were assessed by immunofluorescence staining and flow cytometry.ResultsCombined angiopoietin-2/VEGFA blockade by a bispecific antibody (A2V) modulated the vasculature and abated immunosuppressive macrophages while increasing CD8+effector T cells in the tumours, achieving disease stabilization comparable or superior to cisplatin-based chemotherapy. However, these immunological responses were unexpectedly limited by the addition of a PD-1 antibody, which paradoxically enhanced progression of a fraction of the tumours through a mechanism involving regulatory T cells and macrophages. Elimination of tumour-associated macrophages with a CSF1R-blocking antibody induced NSCLC regression in combination with PD-1 blockade and cisplatin.ConclusionsThe immune cell composition of the tumour determines the outcome of PD-1 blockade. In NSCLC, high infiltration of regulatory T cells and immunosuppressive macrophages may account for tumour hyper-progression upon ICB.Disclosure InformationA. Martinez-Usatorre: None. E. Kadioglu: None. C. Cianciaruso: None. B. Torchia: None. J. Faget: None. E. Meylan: None. M. Schmittnaegel: None. I. Keklikoglou: None. M. De Palma: None.


2020 ◽  
Vol 12 ◽  
pp. 175883592093608
Author(s):  
Harry J. Han ◽  
Yun Rose Li ◽  
Mack Roach ◽  
Rahul Aggarwal

Immune checkpoint inhibitors targeting PD-1 and PD-L1 have demonstrated anti-tumor activity in several advanced solid malignancies. In previously treated metastatic castration resistant prostate cancer (mCRPC), a small subset of patients have a therapeutic response to checkpoint inhibition. Those who do respond to anti-PD-1/PD-L1 therapy have a marked, durable response to treatment, suggesting some derive long-term benefit from immune checkpoint blockade. In other cancers, one strategy to increase the efficacy of immune checkpoint blockade is to combine it with a pro-immune stimulatory agent, such as radiation. Here we present a case of a patient with heavily treated mCRPC who had a significant tumor response to concurrent pembrolizumab and radiation therapy to the primary prostatic mass. We review the growing evidence supporting the use of this combination therapy in other cancers and its potential benefit and safety in mCRPC. Our report highlights a potential therapeutic approach that should be further investigated in previously treated mCRPC.


2020 ◽  
Vol 21 (15) ◽  
pp. 5456 ◽  
Author(s):  
Ayumi Kuzume ◽  
SungGi Chi ◽  
Nobuhiko Yamauchi ◽  
Yosuke Minami

Tumor cells use immune-checkpoint pathways to evade the host immune system and suppress immune cell function. These cells express programmed cell-death protein 1 ligand 1 (PD-L1)/PD-L2, which bind to the programmed cell-death protein 1 (PD-1) present on cytotoxic T cells, trigger inhibitory signaling, and reduce cytotoxicity and T-cell exhaustion. Immune-checkpoint blockade can inhibit this signal and may serve as an effective therapeutic strategy in patients with solid tumors. Several trials have been conducted on immune-checkpoint inhibitor therapy in patients with malignant lymphoma and their efficacy has been reported. For example, in Hodgkin lymphoma, immune-checkpoint blockade has resulted in response rates of 65% to 75%. However, in non-Hodgkin lymphoma, the response rate to immune-checkpoint blockade was lower. In this review, we evaluate the biology of immune-checkpoint inhibition and the current data on its efficacy in malignant lymphoma, and identify the cases in which the treatment was more effective.


Author(s):  
Charlene M. Fares ◽  
Eliezer M. Van Allen ◽  
Charles G. Drake ◽  
James P. Allison ◽  
Siwen Hu-Lieskovan

The emergence of immune checkpoint blockade therapies over the last decade has transformed cancer treatment in a wide range of tumor types. Unprecedented and durable clinical responses in difficult-to-treat cancer histologies have been observed. However, despite these promising long-term responses, the majority of patients fail to respond to immune checkpoint blockade, demonstrating primary resistance. Additionally, many of those who initially respond to treatment eventually experience relapse secondary to acquired resistance. Both primary and acquired resistance are a result of complex and constantly evolving interactions between cancer cells and the immune system. Many mechanisms of resistance have been characterized to date, and more continue to be uncovered. By elucidating and targeting mechanisms of resistance, treatments can be tailored to improve clinical outcomes. This review will discuss the landscape of immune checkpoint blockade response data, different resistance mechanisms, and potential therapeutic strategies to overcome resistance.


Sign in / Sign up

Export Citation Format

Share Document