scholarly journals Metabolic Implications of Immune Checkpoint Proteins in Cancer

Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 179
Author(s):  
Elizabeth R. Stirling ◽  
Steven M. Bronson ◽  
Jessica D. Mackert ◽  
Katherine L. Cook ◽  
Pierre L. Triozzi ◽  
...  

Expression of immune checkpoint proteins restrict immunosurveillance in the tumor microenvironment; thus, FDA-approved checkpoint inhibitor drugs, specifically PD-1/PD-L1 and CTLA-4 inhibitors, promote a cytotoxic antitumor immune response. Aside from inflammatory signaling, immune checkpoint proteins invoke metabolic reprogramming that affects immune cell function, autonomous cancer cell bioenergetics, and patient response. Therefore, this review will focus on the metabolic alterations in immune and cancer cells regulated by currently approved immune checkpoint target proteins and the effect of costimulatory receptor signaling on immunometabolism. Additionally, we explore how diet and the microbiome impact immune checkpoint blockade therapy response. The metabolic reprogramming caused by targeting these proteins is essential in understanding immune-related adverse events and therapeutic resistance. This can provide valuable information for potential biomarkers or combination therapy strategies targeting metabolic pathways with immune checkpoint blockade to enhance patient response.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yue Lu ◽  
Alphonsus H. C. Ng ◽  
Frances E. Chow ◽  
Richard G. Everson ◽  
Beth A. Helmink ◽  
...  

AbstractThe response of patients with recurrent glioblastoma multiforme to neoadjuvant immune checkpoint blockade has been challenging to interpret due to the inter-patient and intra-tumor heterogeneity. We report on a comparative analysis of tumor tissues collected from patients with recurrent glioblastoma and high-risk melanoma, both treated with neoadjuvant checkpoint blockade. We develop a framework that uses multiplex spatial protein profiling, machine learning-based image analysis, and data-driven computational models to investigate the pathophysiological and molecular factors within the tumor microenvironment that influence treatment response. Using melanoma to guide the interpretation of glioblastoma analyses, we interrogate the protein expression in microscopic compartments of tumors, and determine the correlates of cytotoxic CD8+ T cells, tumor growth, treatment response, and immune cell-cell interaction. This work reveals similarities shared between glioblastoma and melanoma, immunosuppressive factors that are unique to the glioblastoma microenvironment, and potential co-targets for enhancing the efficacy of neoadjuvant immune checkpoint blockade.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1161
Author(s):  
Xianda Zhao ◽  
Dechen Wangmo ◽  
Matthew Robertson ◽  
Subbaya Subramanian

Immune checkpoint blockade therapy (ICBT) has revolutionized the treatment and management of numerous cancers, yet a substantial proportion of patients who initially respond to ICBT subsequently develop resistance. Comprehensive genomic analysis of samples from recent clinical trials and pre-clinical investigation in mouse models of cancer provide insight into how tumors evade ICBT after an initial response to treatment. Here, we summarize our current knowledge on the development of acquired ICBT resistance, by examining the mechanisms related to tumor-intrinsic properties, T-cell function, and tumor-immune cell interactions. We discuss current and future management of ICBT resistance, and consider crucial questions remaining in this field of acquired resistance to immune checkpoint blockade therapies.


2020 ◽  
Vol 1 (8) ◽  
pp. 100139
Author(s):  
Valsamo Anagnostou ◽  
Daniel C. Bruhm ◽  
Noushin Niknafs ◽  
James R. White ◽  
Xiaoshan M. Shao ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 331-351
Author(s):  
Shridar Ganesan ◽  
Janice Mehnert

Immune checkpoint blockade (ICB) has significant clinical activity in diverse cancer classes and can induce durable remissions in even refractory advanced disease. However, only a minority of cancer patients treated with ICB have long-term benefits, and ICB treatment is associated with significant, potentially life-threatening, autoimmune side effects. There is a great need to develop biomarkers of response to guide patient selection to maximize the chance of benefit and prevent unnecessary toxicity, and current biomarkers do not have optimal positive or negative predictive value. A variety of potential biomarkers are currently being developed, including those based on assessment of checkpoint protein expression, evaluation of tumor-intrinsic features including mutation burden and viral infection, evaluation of features of the tumor immune microenvironment including nature of immune cell infiltration, and features of the host such as composition of the gut microbiome. Better understanding of the underlying fundamental mechanisms of immune response and resistance to ICB, along with the use of complementary assays that interrogate distinct features of the tumor, the tumor microenvironment, and host immune system, will allow more precise use of these therapies to optimize patient outcomes.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A5.1-A5
Author(s):  
A Martinez-Usatorre ◽  
E Kadioglu ◽  
C Cianciaruso ◽  
B Torchia ◽  
J Faget ◽  
...  

BackgroundImmune checkpoint blockade (ICB) with antibodies against PD-1 or PD-L1 may provide therapeutic benefits in patients with non-small cell lung cancer (NSCLC). However, most tumours are resistant and cases of disease hyper-progression have also been reported.Materials and MethodsGenetically engineered mouse models of KrasG12Dp53null NSCLC were treated with cisplatin along with antibodies against angiopoietin-2/VEGFA, PD-1 and CSF1R. Tumour growth was monitored by micro-computed tomography and the tumour vasculature and immune cell infiltrates were assessed by immunofluorescence staining and flow cytometry.ResultsCombined angiopoietin-2/VEGFA blockade by a bispecific antibody (A2V) modulated the vasculature and abated immunosuppressive macrophages while increasing CD8+effector T cells in the tumours, achieving disease stabilization comparable or superior to cisplatin-based chemotherapy. However, these immunological responses were unexpectedly limited by the addition of a PD-1 antibody, which paradoxically enhanced progression of a fraction of the tumours through a mechanism involving regulatory T cells and macrophages. Elimination of tumour-associated macrophages with a CSF1R-blocking antibody induced NSCLC regression in combination with PD-1 blockade and cisplatin.ConclusionsThe immune cell composition of the tumour determines the outcome of PD-1 blockade. In NSCLC, high infiltration of regulatory T cells and immunosuppressive macrophages may account for tumour hyper-progression upon ICB.Disclosure InformationA. Martinez-Usatorre: None. E. Kadioglu: None. C. Cianciaruso: None. B. Torchia: None. J. Faget: None. E. Meylan: None. M. Schmittnaegel: None. I. Keklikoglou: None. M. De Palma: None.


2020 ◽  
Author(s):  
Oscar Krijgsman ◽  
Kristel Kemper ◽  
Julia Boshuizen ◽  
David W. Vredevoogd ◽  
Elisa A. Rozeman ◽  
...  

Although high clinical response rates are seen for immune checkpoint blockade (ICB) treatment of metastatic melanomas, both intrinsic and acquired ICB resistance remain considerable clinical challenges1. Combination ICB (anti-PD-1 + anti-CTLA-4) shows improved patient benefit2–5, but is associated with severe adverse events and exceedingly high cost. Therefore, there is a dire need to stratify individual patients for their likelihood of responding to either anti-PD-1 or anti-CTLA-4 monotherapy, or the combination. Since it is conceivable that ICB responses are influenced by both tumor cell-intrinsic and -extrinsic factors6–9, we hypothesized that a predictive genetic classifier ought to mirror both these features. In a panel of patient-derived melanoma xenografts10 (PDX), we noted that cells derived from the human tumor microenvironment (TME) that were co-grafted with the tumor cells were naturally replaced by murine cells after the first passage. Taking advantage of the XenofilteR11 algorithm we recently developed to deconvolute human from murine RNA sequence reads from PDX10, we obtained curated human melanoma tumor cell RNA reads. These expression signals were computationally subtracted from the total RNA profiles in bulk (tumor cell + TME) melanomas from patients. We thus derived one genetic signature that is purely tumor cell-intrinsic (“InTumor”), and one that comprises tumor cell-extrinsic RNA profiles (“ExTumor”). Here we report that the InTumor signature predicts patient response to anti-PD-1, but not anti-CTLA-4 treatment. This was validated in melanoma PDX and cell lines, which confirmed that InTumorLO tumors were effectively eliminated by adoptive cell transfer of T-Cell Receptor (TCR)-matched cytotoxic T cells, whereas InTumorHI melanomas were refractory and grew out as fast as tumors challenged with unmatched T cells. In contrast, the ExTumor signature predicts patient response to anti-CTLA-4 but not anti-PD-1. Most importantly, we used the InTumor and ExTumor signatures in conjunction to generate an ICB response quadrant, which predicts clinical benefit for five independent melanoma patient cohorts treated with either mono- or combination ICB. Specifically, these signatures enable identification of patients who have a much higher chance of responding to the combination treatment than to either monotherapy (p < 0.05), as well as patients who are likely to experience little benefit from receiving anti-CTLA-4 on top of anti-PD-1 (p < 0.05). These signatures may be clinically exploited to distinguish patients who need combined PD-1 + CTLA-4 blockade from those who are likely to benefit from either anti-CTLA-4 or anti-PD-1 monotherapy.


2020 ◽  
Vol 21 (15) ◽  
pp. 5456 ◽  
Author(s):  
Ayumi Kuzume ◽  
SungGi Chi ◽  
Nobuhiko Yamauchi ◽  
Yosuke Minami

Tumor cells use immune-checkpoint pathways to evade the host immune system and suppress immune cell function. These cells express programmed cell-death protein 1 ligand 1 (PD-L1)/PD-L2, which bind to the programmed cell-death protein 1 (PD-1) present on cytotoxic T cells, trigger inhibitory signaling, and reduce cytotoxicity and T-cell exhaustion. Immune-checkpoint blockade can inhibit this signal and may serve as an effective therapeutic strategy in patients with solid tumors. Several trials have been conducted on immune-checkpoint inhibitor therapy in patients with malignant lymphoma and their efficacy has been reported. For example, in Hodgkin lymphoma, immune-checkpoint blockade has resulted in response rates of 65% to 75%. However, in non-Hodgkin lymphoma, the response rate to immune-checkpoint blockade was lower. In this review, we evaluate the biology of immune-checkpoint inhibition and the current data on its efficacy in malignant lymphoma, and identify the cases in which the treatment was more effective.


2020 ◽  
Vol 8 (Suppl 1) ◽  
pp. A5.2-A6
Author(s):  
Nils-Petter Rudqvist ◽  
Roberta Zappasodi ◽  
Daniel Wells ◽  
Vésteinn Thorsson ◽  
Alexandria Cogdill ◽  
...  

BackgroundImmune checkpoint blockade (ICB) has revolutionized cancer treatment. However, long-term benefits are only achieved in a small fraction of patients. Understanding the mechanisms underlying ICB activity is key to improving the efficacy of immunotherapy. A major limitation to uncovering these mechanisms is the limited number of responders within each ICB trial. Integrating data from multiple studies of ICB would help overcome this issue and more reliably define the immune landscape of durable responses. Towards this goal, we formed the TimIOs consortium, comprising researchers from the Society for Immunotherapy of Cancer Sparkathon TimIOs Initiative, the Parker Institute of Cancer Immunotherapy, the University of North Carolina-Chapel Hill, and the Institute for Systems Biology. Together, we aim to improve the understanding of the molecular mechanisms associated with defined outcomes to ICB, by building on our joint and multifaceted expertise in the field of immuno-oncology. To determine the feasibility and relevance of our approach, we have assembled a compendium of publicly available gene expression datasets from clinical trials of ICB. We plan to analyze this data using a previously reported pipeline that successfully determined main cancer immune-subtypes associated with survival across multiple cancer types in TCGA.1MethodsRNA sequencing data from 1092 patients were uniformly reprocessed harmonized, and annotated with predefined clinical parameters. We defined a comprehensive set of immunogenomics features, including immune gene expression signatures associated with treatment outcome,1,2 estimates of immune cell proportions, metabolic profiles, and T and B cell receptor repertoire, and scored all compendium samples for these features. Elastic net regression models with parameter optimization done via Monte Carlo cross-validation and leave-one-out cross-validation were used to analyze the capacity of an integrated immunogenomics model to predict durable clinical benefit following ICB treatment.ResultsOur preliminary analyses confirmed an association between the expression of an IFN-gamma signature in tumor (1) and better outcomes of ICB, highlighting the feasibility of our approach.ConclusionsIn line with analysis of pan-cancer TCGA datasets using this strategy (1), we expect to identify analogous immune subtypes characterizing baseline tumors from patients responding to ICB. Furthermore, we expect to find that these immune subtypes will have different importance in the model predicting response and survival. Results of this study will be incorporated into the Cancer Research Institute iAtlas Portal, to facilitate interactive exploration and hypothesis testing.ReferencesThorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Yang T-H O, Porta-Pardo E. Gao GF, Plaisier CL, Eddy JA, et al. The Immune Landscape of Cancer. Immunity 2018; 48(4): 812–830.e14. https://doi.org/10.1016/j.immuni.2018.03.023.Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, Moll T, Tian T, Wei Z, Madan S, Sullivan RJ, et al. Robust Prediction of Response to Immune Checkpoint Blockade Therapy in Metastatic Melanoma. Nat. Med 2018; 24(10): 1545. https://doi.org/10.1038/s41591-018-0157-9.


Sign in / Sign up

Export Citation Format

Share Document