scholarly journals Osteopontin Blockade Immunotherapy Increases Cytotoxic T Lymphocyte Lytic Activity and Suppresses Colon Tumor Progression

Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1006
Author(s):  
John D. Klement ◽  
Dakota B. Poschel ◽  
Chunwan Lu ◽  
Alyssa D. Merting ◽  
Dafeng Yang ◽  
...  

Human colorectal cancers are mostly microsatellite-stable with no response to anti-PD-1 blockade immunotherapy, necessitating the development of a new immunotherapy. Osteopontin (OPN) is elevated in human colorectal cancer and may function as an immune checkpoint. We aimed at elucidating the mechanism of action of OPN and determining the efficacy of OPN blockade immunotherapy in suppression of colon cancer. We report here that OPN is primarily expressed in tumor cells, myeloid cells, and innate lymphoid cells in human colorectal carcinoma. Spp1 knock out mice exhibit a high incidence and fast growth rate of carcinogen-induced tumors. Knocking out Spp1 in colon tumor cells increased tumor-specific CTL cytotoxicity in vitro and resulted in decreased tumor growth in vivo. The OPN protein level is elevated in the peripheral blood of tumor-bearing mice. We developed four OPN neutralization monoclonal antibodies based on their efficacy in blocking OPN inhibition of T cell activation. OPN clones 100D3 and 103D6 increased the efficacy of tumor-specific CTLs in killing colon tumor cells in vitro and suppressed colon tumor growth in tumor-bearing mice in vivo. Our data indicate that OPN blockade immunotherapy with 100D3 and 103D6 has great potential to be further developed for colorectal cancer immunotherapy and for rendering a colorectal cancer response to anti-PD-1 immunotherapy.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A587-A587
Author(s):  
Diego Alvarado ◽  
Laura Vitale ◽  
Mike Murphy ◽  
Thomas O’Neill ◽  
Edward Natoli ◽  
...  

BackgroundAxl is a member of the TAM (Tyro3/Axl/MerTK) family of receptor tyrosine kinases and a negative regulator of innate immunity. Activation of Axl through its ligand Gas6 leads to suppression of myeloid cell activity, while its activation in tumor cells drives tumor growth, metastasis, and is associated with acquired resistance to targeted therapies, radiotherapy and chemotherapy.MethodsPurified monoclonal antibodies and variants thereof were tested in human cancer lines and primary human myeloid cells for effects on Axl signaling and immune activation, respectively.ResultsWe describe a humanized IgG1 Axl-targeting monoclonal antibody (mAb), CDX-0168, that binds to the ligand-binding domain of Axl with sub-nanomolar affinity and potently inhibits Gas6 binding. In tumor cells, CDX-0168 inhibits Gas6-dependent Axl phosphorylation and signaling and elicits tumor cell killing via ADCC in vitro and in vivo. In primary human immune cells, CDX-0168 treatment induces potent release of pro-inflammatory cytokines and chemokines from dendritic cells, monocytes and macrophages through an Fc receptor-dependent mechanism and enhanced T cell activation in mixed lymphocyte reactions. Axl inhibition may further enhance antitumor activity associated with PD-(L)1 blockade. To this end, we generated a tetravalent bispecific Axl x PD-L1 antibody combining CDX-0168 with a potent anti-PD-L1 mAb (9H9) using an IgG-scFv format. The bispecific antibody elicits greater cytokine release and T cell activation in vitro than the combination of the parental antibodies, while maintaining robust Axl and PD-L1 blockade.ConclusionsAdditional studies investigating simultaneous blockade of the Axl and PD-L1 pathways with other agents may further exploit the potential for this novel anti-cancer therapeutic approach.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3721-3721
Author(s):  
Eugene Zhukovsky ◽  
Uwe Reusch ◽  
Carmen Burkhardt ◽  
Stefan Knackmuss ◽  
Ivica Fucek ◽  
...  

Abstract Abstract 3721 Background: CD19 is expressed from early B cell development through differentiation into plasma cells, and is an attractive alternative to CD20 as a target for the development of therapeutic antibodies to treat B cell malignancies. T cells are potent tumor-killing effector cells that cannot be recruited by native antibodies. The CD3 RECRUIT-TandAb AFM11, a humanized bispecific tetravalent antibody with two binding sites for both CD3 and CD19, is a novel therapeutic for the treatment of NHL that harnesses the cytotoxic nature of T cells. Methods: We engineered a bispecific anti-CD19/anti-CD3e tetravalent TandAb with humanized and affinity-matured variable domains. The TandAb's binding properties, T cell-mediated cytotoxic activity, and target-mediated T cell activation were characterized in a panel of in vitro assays. In vivo efficacy was evaluated in a murine NOD/scid xenograft model reconstituted with human PBMC. Results: AFM11 mediates highly potent CD19+ tumor cell lysis in cytotoxicity assays performed on a panel of cell lines (JOK-1, Raji, Nalm-6, MEC-1, VAL, Daudi) and primary B-CLL tumors: EC50 values are in the low- to sub-picomolar range and do not correlate with the expression density of CD19 on the target cell lines. The cytotoxic activity of tetravalent AFM11 is superior to that of alternative bivalent antibody formats possessing only a single binding site for both CD19 and CD3. High affinity binding of AFM11 to CD19 and to CD3 is essential for efficacious T cell recruitment. Both CD8+ and CD4+ T cells mediate cytotoxicity however the former exhibit much faster killing. We observe that AFM11 displays similar cytotoxic efficacy at different effector to target ratios (from 5:1 to 1:5) in cytotoxicity assays; this suggests that T cells are engaged in the serial killing of CD19+ target cells. In the absence of CD19+ target cells in vitro, AFM11 does not elicit T cell activation as manifested by cytokine release (from a panel of ten cytokines associated with T cell activation), their proliferation, or their expression of activation markers. AFM11 activates T cells exclusively in the presence of its targets and mediates lysis of CD19+ cells while sparing antigen-negative bystanders. In the absence of CD19+ target cells, AFM11 concentrations in excess of 500-fold over EC50 induce down-modulation of the CD3/TCR complex. Yet, AFM11-treated T cells can be re-engaged for target cell lysis. All of these features of AFM11-induced T cell activation may contribute additional safety without compromising its efficacy. In vivo AFM11 demonstrates a robust dose-dependent inhibition of subcutaneous Raji tumors in mice. At 5 mg/kg AFM11 demonstrates a complete suppression of tumor growth, and even at 5 ug/kg tumor growth is reduced by 60%. Moreover, we observe that a single administration of AFM11 produces inhibition of tumor growth similar to that of 5 consecutive administrations. Conclusions: In summary, our in vitro and in vivo experiments with AFM11 demonstrate the high potency and efficacy of its anti-tumor cytotoxicity. Thus, AFM11 is a novel highly efficacious drug candidate for the treatment of B cell malignancies with an advantageous safety profile. Disclosures: Zhukovsky: Affimed Therapeutics AG: Employment, Equity Ownership. Reusch:Affimed Therapeutics AG: Employment. Burkhardt:Affimed Therapeutics AG: Employment. Knackmuss:Affimed Therapeutics AG: Employment. Fucek:Affimed Therapeutics AG: Employment. Eser:Affimed Therapeutics AG: Employment. McAleese:Affimed Therapeutics AG: Employment. Ellwanger:Affimed Therapeutics AG: Employment.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1637-1637
Author(s):  
Shoucheng Ning ◽  
Sinclair Angus ◽  
Hartley Cynthia ◽  
Knox Susan4

Abstract Darbepoetin alfa (DA) is a FDA approved long acting erythropoietic protein. We hypothesized that correction of anemia in tumor-bearing mice by DA would secondarily increase the tumor pO2 and potentiate radiation-induced cell killing of tumor cells. To test this hypothesis, we used total body irradiation (TBI) to induce anemia in C3H mice. Murine squamous cell carcinoma tumor (SCC VII) and fibrosarcoma (RIF-1) models were used to study tumor responses to radiation in vivo. DA (30μg/kg) was administered i.p. either every two weeks or weekly. EPO-R RNA levels were measured in tumors from normal, anemic and DA treated mice in both tumor models. Tumors were locally irradiated with daily fractions of 250 cGy for 5 days. Following 500 cGy TBI, hemoglobin levels decreased and reached a nadir of 7.0 ± 0.9 gm/dL 14 days post TBI. Administration of DA reduced the depth and duration of anemia and improved the general health condition of anemic animals as evidenced by accelerated recovery of body weight following the TBI and maintenance of normal levels of activity compared to similarly irradiated animals not treated with DA. Mice treated with DA on the same day as the TBI had elevated hemoglobin levels with a nadir of 11.1 gm/dL on day 14 after TBI. Systemic administration of DA alone did not stimulate tumor growth in TBI-induced anemic mice. When combined with fractionated local tumor irradiation, administration of DA at any of the time points studied (18, 11, 4 and 0 days before initiation of local tumor irradiation) delayed tumor growth and increased the tumor growth delay time from 2.7 days for irradiation alone to 7.3 – 10.6 days for DA treated animals (p < 0.01). There was no statistically significant difference between tumor growth delay times for groups of mice treated with DA at various times before tumor irradiation. Although DA effectively corrected anemia in tumor-bearing mice and significantly decreased the number of hypoxic cells in the tumors as shown by EF5 staining, radiosensitization by DA was independent of the correction of anemia. EPOR RNA expression was barely detectible in tumors cultured in vitro. There were no differences in EPO-R RNA levels in tumors from anemic or DA treated mice (1–2 fold increase), although EPO-R transcription was upregulated in tumors grown in vivo compared to control tumors lines grown in vitro (40–80 fold increase). This may be due to hypoxic induction of EPO-R by tumors in vivo or expression of EPO-R by endothelial cells or infiltrating macrophages. Results from an experiment in non-anemic mice with RIF-1 tumors suggest that DA can sensitize tumor cells in non-anemic mice to radiation as well. These results support the idea that radiosensitization by DA is independent of hemoglobin and tumor pO2. It has long been assumed that anemia causes decreased tumor oxygenation and increased tumor radioresistance, and that correction of anemia would therefore increase tumor pO2, and result in enhanced radiosensitivity. However, the data presented here challenge this presumed relationship. These findings are promising and may have relevance to the treatment of patients with a variety of tumor types with radiation therapy.


1972 ◽  
Vol 135 (4) ◽  
pp. 972-984 ◽  
Author(s):  
Gideon Berke ◽  
Raphael H. Levey

Mouse lymphoid cells, sensitized against tumor allografts, can be deprived of the immunoreactive cells by in vitro absorption with specific fibroblast monolayers. Populations of lymphocytes so depleted are less effective in retarding tumor growth in vivo and in lysing tumor cells in vitro. Moreover, the adsorbed immunoreactive cells can be recovered specifically and are subsequently efficient in inhibiting tumor growth in vivo and in killing tumor cells in vitro. Further evidence is presented for the suggestion that the destruction of target cells in vitro by sensitized lymphoid cells is truly representative of the mode of destruction of grafted cells in vivo.


2017 ◽  
Author(s):  
Junpeng Qi ◽  
Xiuling Li ◽  
Haiyong Peng ◽  
HaJeung Park ◽  
Christoph Rader

AbstractT-cell engaging bispecific antibodies present a promising strategy for cancer immunotherapy and numerous bispecific formats have been developed for retargeting cytolytic T cells toward tumor cells. To explore the therapeutic utility of T-cell engaging bispecific antibodies targeting the receptor tyrosine kinase ROR1, which is expressed by tumor cells of various hematologic and solid malignancies, we used a bispecific ROR1 × CD3 scFv-Fc format based on a heterodimeric and aglycosylated Fc domain designed for extended circulatory half-life and diminished systemic T-cell activation. A diverse panel of ROR1-targeting scFv derived from immune and naïve rabbit antibody repertoires was compared in this bispecific format for target-dependent T-cell recruitment and activation. A ROR1-targeting scFv with a membrane-proximal epitope, R11, revealed potent and selective antitumor activity in vitro and in vivo and emerged as a prime candidate for further preclinical and clinical studies. To elucidate the precise location and engagement of this membrane-proximal epitope, which is conserved between human and mouse ROR1, the three-dimensional structure of scFv R11 in complex with the kringle domain of ROR1 was determined by X-ray crystallography at 1.6-Å resolution.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 361
Author(s):  
Alyssa D. Merting ◽  
Dakota B. Poschel ◽  
Chunwan Lu ◽  
John D. Klement ◽  
Dafeng Yang ◽  
...  

A hallmark of human colorectal cancer is lost expression of FAS, the death receptor for FASL of cytotoxic T lymphocytes (CTLs). However, it is unknown whether restoring FAS expression alone is sufficient to suppress csolorectal-cancer development. The FAS promoter is hypermethylated and inversely correlated with FAS mRNA level in human colorectal carcinomas. Analysis of single-cell RNA-Seq datasets revealed that FAS is highly expressed in epithelial cells and immune cells but down-regulated in colon-tumor cells in human colorectal-cancer patients. Codon usage-optimized mouse and human FAS cDNA was designed, synthesized, and encapsulated into cationic lipid to formulate nanoparticle DOTAP-Chol-mFAS and DOTAP-Chol-hFAS, respectively. Overexpression of codon usage-optimized FAS in metastatic mouse colon-tumor cells enabled FASL-induced elimination of FAS+ tumor cells in vitro, suppressed colon tumor growth, and increased the survival of tumor-bearing mice in vivo. Overexpression of codon-optimized FAS-induced FAS receptor auto-oligomerization and tumor cell auto-apoptosis in metastatic human colon-tumor cells. DOTAP-Chol-hFAS therapy is also sufficient to suppress metastatic human colon tumor xenograft growth in athymic mice. DOTAP-Chol-mFAS therapy exhibited no significant liver toxicity. Our data determined that tumor-selective delivery of FAS DNA nanoparticles is sufficient for suppression of human colon tumor growth in vivo.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A904-A904
Author(s):  
Louise Koopman ◽  
Laura Smits-de Vries ◽  
Frederikke Lihme Egerod ◽  
Sebastiaan Wubben ◽  
Mischa Houtkamp ◽  
...  

BackgroundThe immune checkpoint protein B7H4 is expressed on malignant cells in various solid cancers, whereas its expression is highly restricted in normal tissue. B7H4 is therefore an attractive target for a CD3 bispecific antibody (bsAb) therapeutic. Moreover, its expression is reported to be inversely correlated with PD-L1. Here, we describe the preclinical characterization of two B7H4-targeting CD3 bsAbs with different CD3 affinities, supporting the selection of our clinical lead, DuoBody-CD3xB7H4 (GEN1047).MethodsB7H4 protein expression in patient-derived samples was determined by immunohistochemistry. Controlled Fab-arm exchange of an Fc-silenced B7H4 antibody with two Fc-silenced CD3ε-binding antibodies generated two CD3xB7H4 bsAbs that differ in CD3 binding affinity by approximately 30-fold. In vitro T-cell mediated cytotoxicity, T-cell activation, and cytokine release were assayed using cocultures of B7H4-expressing tumor cells and healthy donor T cells. Nonclinical safety (NCS) of the two CD3xB7H4 bsAbs was assessed in cynomolgus monkeys, and antitumor activity of the clinical lead in vivo was tested in a patient-derived xenograft (PDX) screen in mice with a humanized immune system (HIS).ResultsB7H4 protein expression was confirmed in tumor biopsies from multiple indications, including breast, ovarian and lung cancer. Both bsAbs induced target-specific and dose-dependent tumor cell kill in vitro. Maximal kill and T-cell activation were comparable for both variants, although the potency of the high CD3 affinity bsAb was higher. However, production of inflammatory cytokines at comparable effective concentrations (IC90) was lower for the low CD3 affinity bsAb. Single dose NCS studies in cynomolgus monkeys showed that both CD3xB7H4 bsAbs were well-tolerated. A dose-dependent increase in plasma cytokines IL-6 and MCP-1 2 hours after dosing was observed only with the high CD3 affinity bsAb. Based on these findings, the low CD3 affinity bsAb was selected for follow-up studies and named DuoBody-CD3xB7H4 (GEN1047). DuoBody-CD3xB7H4 demonstrated antitumor activity in vivo in a PDX screen in HIS mice. Repeated dosing of DuoBody-CD3xB7H4 in cynomolgus monkeys confirmed an acceptable safety profile up to the maximal dose tested (30 mg/kg).ConclusionsThese studies describe the preclinical development of DuoBody-CD3xB7H4, a bsAb that induces T-cell mediated cytotoxicity of B7H4-positive tumor cells, which may provide an alternative therapeutic modality in the immune-oncology space for patients with solid cancers.Ethics ApprovalAnimal experiments were performed according to the guidelines of the Institutional Animal Care and Use Committee (IACUC) and in accordance with the regulations of the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC). NCS studies were conducted at Citoxlab (Evreux, France) and Charles River Laboratories (Tranent, UK) in accordance with the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (Council of Europe).


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A746-A746
Author(s):  
Kristel Kemper ◽  
Ellis Gielen ◽  
Mischa Houtkamp ◽  
Peter Boross ◽  
Saskia Burm ◽  
...  

BackgroundThe tumor-associated antigen 5T4 is expressed across a wide range of solid cancers. DuoBody-CD3x5T4 is a bispecific antibody (bsAb) that crosslinks CD3 on T cells with 5T4 on tumor cells, thereby inducing T-cell activation and T-cell mediated cytotoxicity in 5T4-expressing tumor cells. Here, we tested the capacity of DuoBody-CD3x5T4 to engage different T-cell subsets in vitro and investigated the mechanism of action (MoA) in vivo by combining preclinical efficacy studies with exploratory pharmacodynamic (PD) biomarker analysesMethodsImmunohistochemistry was performed on patient-derived tumor tissue-microarrays using a commercial 5T4 monoclonal antibody (EPR5529). The capacity of DuoBody-CD3x5T4 to engage naïve and memory T-cell subsets was assessed in co-cultures of T cells and 5T4-positive tumor cells, using T-cell activation and T-cell mediated cytotoxicity as readouts. Anti-tumor activity in vivo as well as peripheral and intratumoral PD biomarkers were investigated in humanized mice bearing 5T4-expressing cell line-derived xenograft (CDX) or patient-derived xenograft (PDX) tumor models.ResultsHigh prevalence of 5T4 expression (in >86% of biopsies) was observed in NSCLC, SCCHN, TNBC, bladder, esophageal, prostate and uterine cancer. In co-cultures of 5T4+ tumor cells and T cells in vitro, DuoBody-CD3x5T4 induced dose-dependent cytotoxicity, associated with T-cell activation, proliferation, and cytokine, perforin and granzyme production. Crosslinking of T cells with 5T4-expressing tumor cells was essential as no cytotoxicity was observed in CRISPR-Cas9-generated 5T4-knockout tumor cells or with control bsAbs targeting only CD3 or 5T4. Importantly, naïve and memory CD4+ or CD8+ T-cell subsets had equal capacity to mediate DuoBody-CD3x5T4-induced cytotoxicity, although naïve T-cell subsets showed slower kinetics. DuoBody-CD3x5T4 (0.5–20 mg/kg) demonstrated anti-tumor activity in 5T4+ breast and prostate cancer CDX and lung cancer PDX models in humanized mice. Treatment with DuoBody-CD3x5T4 was associated with intratumoral and peripheral T-cell activation as well as elevated cytokine levels, including IFNγ, IL-6 and IL-8, in peripheral blood.ConclusionsDuoBody-CD3x5T4 induced T-cell mediated cytotoxicity in 5T4-expressing tumor cells, associated with T-cell activation and cytokine production in vitro. DuoBody-CD3x5T4 efficiently engaged naïve and memory T cells within both CD4+ and CD8+ T-cell populations to induce T-cell mediated cytotoxicity in 5T4+ tumor cells. In humanized CDX and PDX mouse models, DuoBody-CD3x5T4 showed anti-tumor activity, in addition to PD biomarkers associated with T-cell activation in the tumor and periphery. Currently, DuoBody-CD3x5T4 is being investigated in a first-in-human clinical trial for the treatment of solid tumors (NCT04424641), in which exploratory biomarker analyses to study the clinical MoA and PD are included.Ethics ApprovalThe CDX animal experiments performed are in compliance with the Dutch animal protection law (WoD) translated from the directives (2010/63/EU) and are approved by the Ethical committee of Utrecht. For the PDX models, all patients had given written informed consent, and the animal experiments were carried out in accordance with the German Animal Protection Law (LaGeSoBerlin, A0452/08). The studies were approved by the local Institutional Review Board of Charite University Medicine, Germany.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lauric Haber ◽  
Kara Olson ◽  
Marcus P. Kelly ◽  
Alison Crawford ◽  
David J. DiLillo ◽  
...  

AbstractT-cell-redirecting bispecific antibodies have emerged as a new class of therapeutic agents designed to simultaneously bind to T cells via CD3 and to tumor cells via tumor-cell-specific antigens (TSA), inducing T-cell-mediated killing of tumor cells. The promising preclinical and clinical efficacy of TSAxCD3 antibodies is often accompanied by toxicities such as cytokine release syndrome due to T-cell activation. How the efficacy and toxicity profile of the TSAxCD3 bispecific antibodies depends on the binding affinity to CD3 remains unclear. Here, we evaluate bispecific antibodies that were engineered to have a range of CD3 affinities, while retaining the same binding affinity for the selected tumor antigen. These agents were tested for their ability to kill tumor cells in vitro, and their biodistribution, serum half-life, and anti-tumor activity in vivo. Remarkably, by altering the binding affinity for CD3 alone, we can generate bispecific antibodies that maintain potent killing of TSA + tumor cells but display differential patterns of cytokine release, pharmacokinetics, and biodistribution. Therefore, tuning CD3 affinity is a promising method to improve the therapeutic index of T-cell-engaging bispecific antibodies.


2018 ◽  
Vol 115 (24) ◽  
pp. E5467-E5476 ◽  
Author(s):  
Junpeng Qi ◽  
Xiuling Li ◽  
Haiyong Peng ◽  
Erika M. Cook ◽  
Eman L. Dadashian ◽  
...  

T cell-engaging bispecific antibodies (biAbs) present a promising strategy for cancer immunotherapy, and numerous bispecific formats have been developed for retargeting cytolytic T cells toward tumor cells. To explore the therapeutic utility of T cell-engaging biAbs targeting the receptor tyrosine kinase ROR1, which is expressed by tumor cells of various hematologic and solid malignancies, we used a bispecific ROR1 × CD3 scFv-Fc format based on a heterodimeric and aglycosylated Fc domain designed for extended circulatory t1/2 and diminished systemic T cell activation. A diverse panel of ROR1-targeting scFv derived from immune and naïve rabbit antibody repertoires was compared in this bispecific format for target-dependent T cell recruitment and activation. An ROR1-targeting scFv with a membrane-proximal epitope, R11, revealed potent and selective antitumor activity in vitro, in vivo, and ex vivo and emerged as a prime candidate for further preclinical and clinical studies. To elucidate the precise location and engagement of this membrane-proximal epitope, which is conserved between human and mouse ROR1, the 3D structure of scFv R11 in complex with the kringle domain of ROR1 was determined by X-ray crystallography at 1.6-Å resolution.


Sign in / Sign up

Export Citation Format

Share Document